Python实战之手势识别控制电脑音量

 更新时间:2023年05月04日 16:06:50   作者:Python数据挖掘  
这篇文章主要为大家详细介绍了一个Python OpenCV的实战小项目——手势识别控制电脑音量,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下

今天给大家带来一个OpenCV的实战小项目——手势识别控制电脑音量

先上个效果图:

通过大拇指和食指间的开合距离来调节电脑音量,即通过识别大拇指与食指这两个关键点之间的距离来控制电脑音量大小

一、环境配置

这个项目需要的环境比较简单,主要就是opencv和mediapipe库

import cv2
import mediapipe as mp
from ctypes import cast, POINTER
from comtypes import CLSCTX_ALL
from pycaw.pycaw import AudioUtilities, IAudioEndpointVolume
import pyautogui

缺库的话直接:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple  库名称

二、代码介绍

1)初始化mediapipe库

self.mp_drawing = mp.solutions.drawing_utils
self.mp_drawing_styles = mp.solutions.drawing_styles
self.mp_hands = mp.solutions.hands

2)获取电脑音量范围

devices = AudioUtilities.GetSpeakers()
interface = devices.Activate(IAudioEndpointVolume._iid_, CLSCTX_ALL, None)
self.volume = cast(interface, POINTER(IAudioEndpointVolume))
self.volume.SetMute(0, None)
self.volume_range = self.volume.GetVolumeRange()

3)利用OpenCV读取摄像头视频流进行显示

cap = cv2.VideoCapture(0)
resize_w = 640
resize_h = 480
while cap.isOpened():
    success, image = cap.read()
    image = cv2.resize(image, (resize_w, resize_h))

4)识别手掌,获取手掌关键点坐标

# 判断是否有手掌
if results.multi_hand_landmarks:
    # 遍历每个手掌
    for hand_landmarks in results.multi_hand_landmarks:
        # 在画面标注手指
        # 解析手指,存入各个手指坐标
        landmark_list = []
        for landmark_id, finger_axis in enumerate(
                hand_landmarks.landmark):
            landmark_list.append([
                landmark_id, finger_axis.x, finger_axis.y,
                finger_axis.z
            ])
        if landmark_list:
            # 获取大拇指指尖坐标
            thumb_finger_tip = landmark_list[4]
            thumb_finger_tip_x = math.ceil(thumb_finger_tip[1] * resize_w)
            thumb_finger_tip_y = math.ceil(thumb_finger_tip[2] * resize_h)
            # 获取食指指尖坐标
            index_finger_tip = landmark_list[8]
            index_finger_tip_x = math.ceil(index_finger_tip[1] * resize_w)
            index_finger_tip_y = math.ceil(index_finger_tip[2] * resize_h)
            # 获取中指尖坐标
            middle_finger_tip = landmark_list[12]
            middle_finger_tip_x = math.ceil(middle_finger_tip[1] * resize_w)
            middle_finger_tip_y = math.ceil(middle_finger_tip[2] * resize_h)
            # 中指与食指中间点
            middle_index_finger_middle_point = (middle_finger_tip_x + index_finger_tip_x) // 2, (
                        middle_finger_tip_y + index_finger_tip_y) // 2
            # print(thumb_finger_tip_x)
            middle_finger_point = (middle_finger_tip_x, middle_finger_tip_y)
            index_finger_point = (index_finger_tip_x, index_finger_tip_y)
            # 画指尖2点
            image = cv2.circle(image, middle_finger_point, 10, (255, 0, 255), -1)
            image = cv2.circle(image, index_finger_point, 10, (255, 0, 255), -1)
            image = cv2.circle(image,  middle_index_finger_middle_point, 10, (255, 0, 255), -1)
            # 画2点连线
            image1 = cv2.line(image, middle_finger_point, index_finger_point, (255, 0, 255), 5)
            # 勾股定理计算长度
            middle_index_line_len = math.hypot((middle_finger_tip_x - index_finger_tip_x),
                                      (middle_finger_tip_y - index_finger_tip_y))

5)将拇指与食指距离与电脑音量进行关联

# 当食指中指距离大于65像素允许调音量
if middle_index_line_len < 65.0:
    # 拇指与食指中间点
    finger_middle_point = (thumb_finger_tip_x + index_finger_tip_x) // 2, (
                thumb_finger_tip_y + index_finger_tip_y) // 2
    # print(thumb_finger_tip_x)
    thumb_finger_point = (thumb_finger_tip_x, thumb_finger_tip_y)
    index_finger_point = (index_finger_tip_x, index_finger_tip_y)
    # 画2点连线
    image = cv2.line(image, thumb_finger_point, index_finger_point, (255, 0, 255), 5)
    # 勾股定理计算长度
    line_len = math.hypot((index_finger_tip_x - thumb_finger_tip_x),
                          (index_finger_tip_y - thumb_finger_tip_y))
    # 获取电脑最大最小音量
    min_volume = self.volume_range[0]
    max_volume = self.volume_range[1]
    # 将指尖长度映射到音量上
    vol = np.interp(line_len, [50, 300], [min_volume, max_volume])
    # 将指尖长度映射到矩形显示上
    rect_height = np.interp(line_len, [50, 300], [0, 200])
    rect_percent_text = np.interp(line_len, [50, 300], [0, 100])
    # 设置电脑音量
    self.volume.SetMasterVolumeLevel(vol, None)
#锁定调音量,进行鼠标控制
else:                             
    for id, lm in enumerate(hand_landmarks.landmark):
        # print(id,lm)
        h, w, c = image.shape
        cx, cy = int(lm.x * w), int(lm.y * h)
        # id=手部关键点
        if id == 0:
            if cx > dot[0] and cx < dot[2] and cy > dot[1] and cy < dot[3]:
                x0 = ((cx-dot[0])/(dot[2]-dot[0]))*1920
                y0 = ((cy-dot[1])/(dot[3]-dot[1]))*1080
                pyautogui.moveTo(x0, y0, duration=0.02)
        # print(thumb_finger_tip_x)
        thumb_finger_point = (thumb_finger_tip_x, thumb_finger_tip_y)
        index_finger_point = (index_finger_tip_x, index_finger_tip_y)
        # 画指尖2点
        image = cv2.circle(image, thumb_finger_point, 10, (255, 0, 255), -1)
        image = cv2.circle(image, index_finger_point, 10, (255, 0, 255), -1)
        image = cv2.circle(image, finger_middle_point, 10, (255, 0, 255), -1)
        # 画2点连线
        image = cv2.line(image, thumb_finger_point, index_finger_point, (255, 0, 255), 5)
        # 勾股定理计算长度
        line_len = math.hypot((index_finger_tip_x - thumb_finger_tip_x),
                              (index_finger_tip_y - thumb_finger_tip_y))
        # 操作
        # 左键双击   
        if line_len < 20:
            pyautogui.doubleClick()
            ms_d = 0

三、使用方式

1)直接运行程序

2)把手掌靠近摄像头,置于矩形框内

3)通过拇指与食指的开合即可调节音量

到此这篇关于Python实战之手势识别控制电脑音量的文章就介绍到这了,更多相关Python手势识别控制电脑音量内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python中封包建立过程实例

    python中封包建立过程实例

    在本篇文章里小编给大家分享的是一篇关于python中封包建立过程实例内容,有兴趣的朋友们可以学习参考下。
    2021-02-02
  • keras导入weights方式

    keras导入weights方式

    这篇文章主要介绍了keras导入weights方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • python中的List sort()与torch.sort()

    python中的List sort()与torch.sort()

    这篇文章主要介绍了python中的List sort()与torch.sort()使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-09-09
  • Python实现蚁群算法

    Python实现蚁群算法

    本文主要介绍了Python实现蚁群算法,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-03-03
  • Django给表单添加honeypot验证增加安全性

    Django给表单添加honeypot验证增加安全性

    这篇文章主要介绍了Django给表单添加honeypot验证增加安全性的方法,帮助大家更好的理解和学习使用Django框架,感兴趣的朋友可以了解下
    2021-05-05
  • Python开发生产环境常用的4个工具(实用推荐)

    Python开发生产环境常用的4个工具(实用推荐)

    构建优秀的软件需要遵循特定的规则并执行行业标准,如何在真实的生产环境开发中体现呢?在这篇文章中,我将向您展示我在Python项目中设置的4种工具,以简化开发工作流程并执行一些最佳实践,这些工具帮助我提高了效率,节省了时间,希望你读完也能有所收获
    2024-01-01
  • Python中使用format函数的小结

    Python中使用format函数的小结

    在Python中,format()函数是一种用于格式化字符串的方法主要介绍了Python中使用format函数的小结,本文就来介绍一下format()函数的使用示例,感兴趣的可以了解一下
    2023-08-08
  • python 多维切片之冒号和三个点的用法介绍

    python 多维切片之冒号和三个点的用法介绍

    下面小编就为大家分享一篇python 多维切片之冒号和三个点的用法介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • Python探索之静态方法和类方法的区别详解

    Python探索之静态方法和类方法的区别详解

    这篇文章主要介绍了Python探索之静态方法和类方法的区别详解,小编觉得还是挺不错的,这里分享给大家,供需要的朋友参考。
    2017-10-10
  • TensorFlow神经网络优化策略学习

    TensorFlow神经网络优化策略学习

    这篇文章主要介绍了TensorFlow神经网络优化策略
    2018-03-03

最新评论