Python Pandas创建Dataframe数据框的六种方法汇总

 更新时间:2023年05月09日 11:09:03   作者:AHU-丁少侠  
这篇文章主要介绍了Python中的Pandas创建Dataframe数据框的六种方法,创建Dataframe主要是使用pandas中的DataFrame函数,其核心就是第一个参数:data,传入原始数据,因此我们可以据此给出六种创建Dataframe的方法,需要的朋友可以参考下

创建Dataframe主要是使用pandas中的DataFrame函数,其核心就是第一个参数:data,传入原始数据,因此我们可以据此给出六种创建Dataframe的方法:(示例代码环境:jupyter:python3.8)

一、字典类

方法1:列表、数组或元组构成的字典构造Dataframe

直接上代码:

import pandas as pd
import numpy as np
dic = {"a": [1, 2, 3, 4], #列表
       "b": np.array([4, 5, 6, 7]), #数组
       "c": (1, 2, 3, 4)} #元组
data = pd.DataFrame(dic) # 创建Dataframe
data

运行结果:

可以看到,一个新的数据框已经创建成功了。系统默认为我们生成了行索引,而列索引就是字典dic里的key,我们也可以在创建Dataframe时手动指定行索引,只需修改参数index

import pandas as pd
import numpy as np
dic = {
    "a": [1, 2, 3, 4],  # 列表
    "b": np.array([4, 5, 6, 7]),  # 数组
    "c": (1, 2, 3, 4),
}  # 元组
data = pd.DataFrame(dic, index=["一", "二", "三", "四"])  # 创建Dataframe
data

运行结果:

那么如果事后我们后悔了,觉得我们起的列索引的名字不好听,怎么修改呢?只需修改Dataframecolumns属性:

data.columns = ["A", "B", "C"]
data

结果如下:

读者也可以尝试修改Dataframeindex属性。

方法2:Series构成的字典构造Dataframe

import pandas as pd
import numpy as np
dic = {"a": pd.Series([1, 2, 3, 4]), 
       "b": pd.Series([4, 5, 6, 7])}
data = pd.DataFrame(dic)  # 创建Dataframe
data

运行结果:

方法3:字典构成的字典构造Dateframe

import pandas as pd
import numpy as np
dic = {"a": {"一": 1, "二": 2}, 
       "b": {"一": 10, "二": 20}, 
       "c": {"一": 100, "二": 200}}
data = pd.DataFrame(dic)  # 创建Dataframe
data

运行结果:

其中:外层的a,b,c这三个key作为了列索引,内层的一,二作为了行索引。读者可以尝试为字典dic再添加一个元素:"d":{"一": 100},看看创建出来的Dataframe长什么样,这个结果会给你什么启示?

二、列表类

方法1:二维数组构造Dataframe

import pandas as pd
import numpy as np
ls = np.arange(12).reshape(3, 4)  # 创建二维数组
data = pd.DataFrame(ls)
data

运行结果:

方法2:字典列表构造Dataframe

import pandas as pd
import numpy as np
ls = [{"一": 1, "二": 2}, 
      {"一": 10, "二": 20}, 
      {"一": 100, "二": 200}]
data = pd.DataFrame(ls)
data

运行结果:

可以看到,列表中的字典的key作为了列索引,这个就很像关系型数据库里的字段和值。读者要注意和字典类中方法3的区别。

方法3:Series列表构造Dataframe

import pandas as pd
import numpy as np
ls = [pd.Series([1, 2, 3, 4]),
      pd.Series([4, 5, 6, 7])]
data = pd.DataFrame(ls)
data

运行结果:

三、小结

笔者为读者提供了六种方法创建Dataframe,这里总结一下:

1.细心的读者可能会发现:

在字典类中,字典最外层的key都作为了列索引,而则作为某一行的值;

在列表类中,列表的每一个元素都作为了某一行的值。

2.读者需要在实际数据处理时,根据处理数据的特点选择合适的方式创建Dataframe

到此这篇关于Python Pandas创建Dataframe数据框的六种方法的文章就介绍到这了,更多相关Python Pandas创建Dataframe数据框内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 浅谈Python 钉钉报警必备知识系统讲解

    浅谈Python 钉钉报警必备知识系统讲解

    这篇文章主要介绍了浅谈Python 钉钉报警必备知识系统讲解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-08-08
  • Python的Flask项目中获取请求用户IP地址 addr问题

    Python的Flask项目中获取请求用户IP地址 addr问题

    这篇文章主要介绍了Python的Flask项目中获取请求用户IP地址 addr问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-01-01
  • python读取文本中的坐标方法

    python读取文本中的坐标方法

    今天小编就为大家分享一篇python读取文本中的坐标方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • python获取局域网占带宽最大3个ip的方法

    python获取局域网占带宽最大3个ip的方法

    这篇文章主要介绍了python获取局域网占带宽最大3个ip的方法,涉及Python解析URL参数的相关技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-07-07
  • 基于树莓派的语音对话机器人

    基于树莓派的语音对话机器人

    这篇文章主要为大家详细介绍了基于树莓派的语音对话机器人,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-06-06
  • Python可变对象与不可变对象原理解析

    Python可变对象与不可变对象原理解析

    这篇文章主要介绍了Python可变对象与不可变对象原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • Python入门教程(十六)Python的if逻辑判断分支

    Python入门教程(十六)Python的if逻辑判断分支

    这篇文章主要介绍了Python入门教程(十六)Python的if逻辑判断分支,Python是一门非常强大好用的语言,也有着易上手的特性,本文为入门教程,需要的朋友可以参考下
    2023-04-04
  • Python实现的HMacMD5加密算法示例

    Python实现的HMacMD5加密算法示例

    这篇文章主要介绍了Python实现的HMacMD5加密算法,简单说明了HMAC-MD5加密算法的概念、原理并结合实例形式分析了Python实现HMAC-MD5加密算法的相关操作技巧,,末尾还附带了Java实现HMAC-MD5加密算法的示例,需要的朋友可以参考下
    2018-04-04
  • python利用Guetzli批量压缩图片

    python利用Guetzli批量压缩图片

    本篇文章主要介绍了python利用Guetzli批量压缩图片,详细的介绍了谷歌的开源图片压缩工具Guetzli,非常具有实用价值,需要的朋友可以参考下。
    2017-03-03
  • python批量telnet检测IP地址的端口是否开放

    python批量telnet检测IP地址的端口是否开放

    本文主要介绍了python批量telnet检测IP地址的端口是否开放,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-04-04

最新评论