Python中如何将Tqdm与Asyncio结合使用呢

 更新时间:2023年05月10日 11:27:30   作者:冷冻工厂  
这篇文章主要和大家详细介绍了在Python中如何将Tqdm与Asyncio结合使用呢,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下

简介

困扰

在 Python 中使用并发编程来提高效率对于数据科学家来说并不罕见。在后台观察各种子进程或并发线程以保持我的计算或 IO 绑定任务的顺序总是令人满意的。

但是还有一点困扰我的是,当我在后台并发处理成百上千个文件或者执行成百上千个进程时,我总是担心会不会有几个任务偷偷挂了,整个代码永远跑不完。我也很难知道代码现在在哪里执行。

最糟糕的是,当我看着一个空白屏幕时,很难说出我的代码需要多长时间才能执行或 ETA 是多少。这对我安排工作日程的能力非常不利。

因此,我想要一种方法让我知道代码执行到了哪里。

已有方法

比较传统的做法是任务之间共享一块内存区域,在这块内存区域放一个计数器,当一个任务结束的时候让这个计数器+1,然后用一个线程不停的打印这个计数器的值。

这从来都不是一个好的解决方案:一方面,我需要在你现有的业务逻辑中添加一段用于计数的代码,这违反了“低耦合,高内聚”的原则。另一方面,由于线程安全问题,我必须非常小心锁定机制,这会导致不必要的性能问题。

tqdm

有一天,我发现了 tqdm 库,它使用进度条来可视化我的代码进度。我可以使用进度条来可视化我的 asyncio 任务的完成和预计到达时间吗?

那么本文我把这个方法分享给大家,让每个程序员都有机会监控自己并发任务的进度。

异步

在我们开始之前,我希望您了解一些 Python asyncio 的背景知识。我的文章描述了asyncio的一些常用API的用法,这将有助于我们更好地理解tqdm的设计:

tqdm 概述

如官方网站所述,tqdm 是一个显示循环进度条的工具。它使用简单、高度可定制并且占用资源少。

一个典型的用法是将一个可迭代对象传递给 tqdm 构造函数,然后你会得到一个如下所示的进度条:

from time import sleep
from tqdm import tqdm


def main():
    for _ in tqdm(range(100)):
        # do something in the loop
        sleep(0.1)


if __name__ == "__main__":
    main()

或者您可以在读取文件时手动浏览并更新进度条的进度:

import os
from tqdm import tqdm


def main():
    filename = "../data/large-dataset"
    with (tqdm(total=os.path.getsize(filename)) as bar,
            open(filename, "r", encoding="utf-8") as f):
        for line in f:
            bar.update(len(line))


if __name__ == "__main__":
    main()

将 tqdm 与异步集成

总体而言,tqdm 非常易于使用。但是,GitHub 上需要更多关于将 tqdm 与 asyncio 集成的信息。所以我深入研究了源代码,看看 tqdm 是否支持 asyncio。

幸运的是,最新版本的 tqdm 提供了包 tqdm.asyncio,它提供了类 tqdm_asyncio。

tqdm_asyncio 类有两个相关的方法。一个是 tqdm_asyncio.as_completed。从源码可以看出,它是对asyncio.as_completed的包装:

@classmethod
    def as_completed(cls, fs, *, loop=None, timeout=None, total=None, **tqdm_kwargs):
        """
        Wrapper for `asyncio.as_completed`.
        """
        if total is None:
            total = len(fs)
        kwargs = {}
        if version_info[:2] < (3, 10):
            kwargs['loop'] = loop
        yield from cls(asyncio.as_completed(fs, timeout=timeout, **kwargs),
                       total=total, **tqdm_kwargs)

另一个是 tqdm_asyncio.gather ,从源代码可以看出,它基于模拟 asyncio.gather 功能的 tqdm_asyncio.as_completed 的实现:

@classmethod
    async def gather(cls, *fs, loop=None, timeout=None, total=None, **tqdm_kwargs):
        """
        Wrapper for `asyncio.gather`.
        """
        async def wrap_awaitable(i, f):
            return i, await f

        ifs = [wrap_awaitable(i, f) for i, f in enumerate(fs)]
        res = [await f for f in cls.as_completed(ifs, loop=loop, timeout=timeout,
                                                 total=total, **tqdm_kwargs)]
        return [i for _, i in sorted(res)]

所以,接下来,我将描述这两个API的用法。在开始之前,我们还需要做一些准备工作。在这里,我写了一个简单的方法来模拟一个随机休眠时间的并发任务:

import asyncio
import random

from tqdm.asyncio import tqdm_asyncio


class AsyncException(Exception):
    def __int__(self, message):
        super.__init__(self, message)


async def some_coro(simu_exception=False):
    delay = round(random.uniform(1.0, 5.0), 2)

    # We will simulate throwing an exception if simu_exception is True
    if delay > 4 and simu_exception:
        raise AsyncException("something wrong!")

    await asyncio.sleep(delay)

    return delay

紧接着,我们将创建 2000 个并发任务,然后使用 tqdm_asyncio.gather 而不是熟悉的 asyncio.gather 方法来查看进度条是否正常工作:

async def main():
    tasks = []
    for _ in range(2000):
        tasks.append(some_coro())
    await tqdm_asyncio.gather(*tasks)

    print(f"All tasks done.")


if __name__ == "__main__":
    asyncio.run(main())

或者让我们用 tqdm_asyncio.as_completed 替换 tqdm_asyncio.gather 并重试:

async def main():
    tasks = []
    for _ in range(2000):
        tasks.append(some_coro())

    for done in tqdm_asyncio.as_completed(tasks):
        await done

    print(f"The tqdm_asyncio.as_completed also works fine.")


if __name__ == "__main__":
    asyncio.run(main())

到此这篇关于Python中如何将Tqdm与Asyncio结合使用呢的文章就介绍到这了,更多相关Python Tqdm Asyncio内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python+logging输出到屏幕将log日志写入文件

    Python+logging输出到屏幕将log日志写入文件

    这篇文章主要给大家介绍了关于Python+logging输出到屏幕将log日志写入文件的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • Python3监控疫情的完整代码

    Python3监控疫情的完整代码

    这篇文章主要介绍了Python3监控疫情的完整代码,代码简单易懂,非常不错具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-02-02
  • Python切图九宫格的实现方法

    Python切图九宫格的实现方法

    这篇文章主要介绍了Python切图九宫格的实现方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-10-10
  • 详解运行Python的神器Jupyter Notebook

    详解运行Python的神器Jupyter Notebook

    如果我们想要运行Python,就是在Python或者IPython的解释器环境中进行交互式运行,或者程序员最喜欢的编写.py文件,在文件中编写python代码,然后运行。如果想写一篇Python的文章,里面有代码,还希望代码在当前页面运行,那就是使用我们今天要介绍的Jupyter Notebook。
    2021-06-06
  • Django模板过滤器和继承示例详解

    Django模板过滤器和继承示例详解

    初入python和django做项目,遇到很多前端页面代码冗余的情况,特别是头部和脚部,代码都是一样的,所以下面这篇文章主要给大家介绍了关于Django模板过滤器和继承的相关资料,需要的朋友可以参考下
    2021-11-11
  • Python统计日志中每个IP出现次数的方法

    Python统计日志中每个IP出现次数的方法

    这篇文章主要介绍了Python统计日志中每个IP出现次数的方法,实例分析了Python基于正则表达式解析日志文件的相关技巧,需要的朋友可以参考下
    2015-07-07
  • python中nuitka使用程序打包的实现

    python中nuitka使用程序打包的实现

    本文主要介绍了python中nuitka使用程序打包的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2025-04-04
  • 使用Python生成随机图片验证码的代码详解

    使用Python生成随机图片验证码的代码详解

    当我们在写一个Web项目的时候一般要写登录操作,而为了安全起见,现在的登录功能都会加上输入图片验证码这一功能,所以本文就给大家介绍一下如何使用Python生成随机图片验证码,需要的朋友可以参考下
    2023-07-07
  • numpy 数组拷贝地址所引起的同步替换问题

    numpy 数组拷贝地址所引起的同步替换问题

    本文主要介绍了numpy 数组拷贝地址所引起的同步替换问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • python类中的self和变量用法及说明

    python类中的self和变量用法及说明

    这篇文章主要介绍了python类中的self和变量用法及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-11-11

最新评论