pandas库中 DataFrame的用法小结

 更新时间:2023年05月16日 14:37:35   作者:匿名的魔术师  
这篇文章主要介绍了pandas库中 DataFrame的用法,利用pandas.DataFrame可以构建表格,通过列标属性调用列对象,本文结合实例代码给大家介绍的非常详细,需要的朋友可以参考下

DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。

利用pandas.DataFrame可以构建表格,通过列标属性调用列对象

一、构建表格

举例

import pandas as pd
x = [
        ['PyTorch', '-', '.pt', True, True],
        ['TorchScript', 'torchscript', '.torchscript', True, True],
        ['ONNX', 'onnx', '.onnx', True, True],
        ['OpenVINO', 'openvino', '_openvino_model', True, False],
        ['TensorRT', 'engine', '.engine', False, True],
        ['CoreML', 'coreml', '.mlmodel', True, False],
        ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
        ['TensorFlow GraphDef', 'pb', '.pb', True, True],
        ['TensorFlow Lite', 'tflite', '.tflite', True, False],
        ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
        ['TensorFlow.js', 'tfjs', '_web_model', False, False],
        ['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
df1 = pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
df2 = pd.DataFrame(x, index=list(['a','b','c','d','e','f','g','q','w','e','r','t']),columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
print(df1)
print('=======================================')
print(df2)

输出结果

                   Format     Argument           Suffix    CPU    GPU
0                 PyTorch            -              .pt   True   True
1             TorchScript  torchscript     .torchscript   True   True
2                    ONNX         onnx            .onnx   True   True
3                OpenVINO     openvino  _openvino_model   True  False
4                TensorRT       engine          .engine  False   True
5                  CoreML       coreml         .mlmodel   True  False
6   TensorFlow SavedModel  saved_model     _saved_model   True   True
7     TensorFlow GraphDef           pb              .pb   True   True
8         TensorFlow Lite       tflite          .tflite   True  False
9     TensorFlow Edge TPU      edgetpu  _edgetpu.tflite  False  False
10          TensorFlow.js         tfjs       _web_model  False  False
11           PaddlePaddle       paddle    _paddle_model   True   True
=======================================
                  Format     Argument           Suffix    CPU    GPU
a                PyTorch            -              .pt   True   True
b            TorchScript  torchscript     .torchscript   True   True
c                   ONNX         onnx            .onnx   True   True
d               OpenVINO     openvino  _openvino_model   True  False
e               TensorRT       engine          .engine  False   True
f                 CoreML       coreml         .mlmodel   True  False
g  TensorFlow SavedModel  saved_model     _saved_model   True   True
q    TensorFlow GraphDef           pb              .pb   True   True
w        TensorFlow Lite       tflite          .tflite   True  False
e    TensorFlow Edge TPU      edgetpu  _edgetpu.tflite  False  False
r          TensorFlow.js         tfjs       _web_model  False  False
t           PaddlePaddle       paddle    _paddle_model   True   True

可以看出 index参数为行标设置,columns为列标设置,且都需为列表形式,长度都需要与给出的列表横列数量一致(例子中的x)。

二、调用列对象和其中的属性

import pandas as pd
x = [
        ['PyTorch', '-', '.pt', True, True],
        ['TorchScript', 'torchscript', '.torchscript', True, True],
        ['ONNX', 'onnx', '.onnx', True, True],
        ['OpenVINO', 'openvino', '_openvino_model', True, False],
        ['TensorRT', 'engine', '.engine', False, True],
        ['CoreML', 'coreml', '.mlmodel', True, False],
        ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
        ['TensorFlow GraphDef', 'pb', '.pb', True, True],
        ['TensorFlow Lite', 'tflite', '.tflite', True, False],
        ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
        ['TensorFlow.js', 'tfjs', '_web_model', False, False],
        ['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
df1 = pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
df2 = pd.DataFrame(x, index=list(['a','b','c','d','e','f','g','q','w','e','r','t']),columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
# print(df1)
# print('=======================================')
# print(df2)
print(df1.Suffix)
print('=====================================')
print(df2.Format)

结合这一中的输出表看,其输出结果如下

0                 .pt
1        .torchscript
2               .onnx
3     _openvino_model
4             .engine
5            .mlmodel
6        _saved_model
7                 .pb
8             .tflite
9     _edgetpu.tflite
10         _web_model
11      _paddle_model
Name: Suffix, dtype: object
=====================================
a                  PyTorch
b              TorchScript
c                     ONNX
d                 OpenVINO
e                 TensorRT
f                   CoreML
g    TensorFlow SavedModel
q      TensorFlow GraphDef
w          TensorFlow Lite
e      TensorFlow Edge TPU
r            TensorFlow.js
t             PaddlePaddle
Name: Format, dtype: object

可以看到 输出的是一个 列的类实例,若继续调用这个列中的每个元素,可以通过下列语句实现

print(df1.Suffix[0])
print('=====================================')
print(df2.Format[1])
print('=====================================')

通过索引调用,输出为

.pt
=====================================
TorchScript
=====================================

或者通过该属性所在的行标进行调用

print(df2.Format['a'])

输出为 

PyTorch

三、其中的属性debug

 四、怎么获得行

目前还不清楚,上面的debug显示其不包含具有 行信息的属性,不过可以通过 values这个属性来调用行,

 values也是个类实例,其值为numpy矩阵,所以通过矩阵形式调用行,例如 

print(df1.values[0, :])
>>['PyTorch' '-' '.pt' True True]

到此这篇关于pandas库中 DataFrame的用法的文章就介绍到这了,更多相关pandas库DataFrame用法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python得到qq句柄,并显示在前台的方法

    python得到qq句柄,并显示在前台的方法

    今天小编就为大家分享一篇python得到qq句柄,并显示在前台的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • python文件的md5加密方法

    python文件的md5加密方法

    这篇文章主要介绍了python文件的md5加密方法,涉及Python针对文件的读取与字符串加密的相关技巧,需要的朋友可以参考下
    2016-04-04
  • Python 跨.py文件调用自定义函数说明

    Python 跨.py文件调用自定义函数说明

    这篇文章主要介绍了Python 跨.py文件调用自定义函数说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Python self用法详解

    Python self用法详解

    这篇文章主要介绍了Python self用法的相关资料,帮助大家更好的理解和学习python,感兴趣的朋友可以了解下
    2020-11-11
  • Python实现Window路径格式转换为Linux路径格式的代码

    Python实现Window路径格式转换为Linux路径格式的代码

    这篇文章主要介绍了Python实现Window路径格式转换为Linux路径格式的方法,文中通过代码示例讲解的非常详细,对大家的学习或工作有一定的帮助,需要的朋友可以参考下
    2024-07-07
  • Python 实现list,tuple,str和dict之间的相互转换

    Python 实现list,tuple,str和dict之间的相互转换

    这篇文章主要介绍了Python 实现list,tuple,str和dict之间的相互转换,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • Python使用difflib标准库实现查找文本间的差异

    Python使用difflib标准库实现查找文本间的差异

    在文本处理和比较中,查找文本之间的差异是一项常见的任务,本文将详细介绍如何使用difflib模块来查找文本之间的差异,包括单行和多行文本的比较、生成差异报告,需要的可以参考下
    2024-03-03
  • Python中判断subprocess调起的shell命令是否结束

    Python中判断subprocess调起的shell命令是否结束

    这篇文章主要介绍了Python中判断subprocess调起的shell命令是否结束的方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • 基于python实现分析识别文章/内容中的高频词和关键词

    基于python实现分析识别文章/内容中的高频词和关键词

    要分析一篇文章的高频词和关键词,可以使用 Python 中的 nltk 库和 collections 库或者jieba库来实现,本篇文章介绍基于两种库分别实现分析内容中的高频词和关键词,需要的朋友可以参考下
    2023-09-09
  • Python进度条的使用

    Python进度条的使用

    在使用Python处理比较耗时操作的时候,为了便于观察处理进度,就需要通过进度条将处理情况进行可视化展示,本文主要介绍了Python进度条的使用,分享给大家,感兴趣的可以了解一下
    2021-05-05

最新评论