爬山算法简介和Python实现实例

 更新时间:2014年04月26日 09:30:53   作者:  
这篇文章主要介绍了爬山算法,爬山法(climbing method)是一种优化算法,其一般从一个随机的解开始,然后逐步找到一个最优解(局部最优)然后用Python实现了这个算法,需要的朋友可以参考下

一、爬山法简介

爬山法(climbing method)是一种优化算法,其一般从一个随机的解开始,然后逐步找到一个最优解(局部最优)。 假定所求问题有多个参数,我们在通过爬山法逐步获得最优解的过程中可以依次分别将某个参数的值增加或者减少一个单位。例如某个问题的解需要使用3个整数类型的参数x1、x2、x3,开始时将这三个参数设值为(2,2,-2),将x1增加/减少1,得到两个解(1,2,-2), (3, 2,-2);将x2增加/减少1,得到两个解(2,3, -2),(2,1, -2);将x3增加/减少1,得到两个解(2,2,-1),(2,2,-3),这样就得到了一个解集:
(2,2,-2), (1, 2,-2), (3, 2,-2), (2,3,-2), (2,1,-2), (2,2,-1), (2,2,-3)
从上面的解集中找到最优解,然后将这个最优解依据上面的方法再构造一个解集,再求最优解,就这样,直到前一次的最优解和后一次的最优解相同才结束“爬山”。

二、Python实例

设方程 y = x1+x2-x3,x1是区间[-2, 5]中的整数,x2是区间[2, 6]中的整数,x3是区间[-5, 2]中的整数。使用爬山法,找到使得y取值最小的解。

代码如下:

复制代码 代码如下:

import random

def evaluate(x1, x2, x3):
    return x1+x2-x3

if __name__ == '__main__':
    x_range = [ [-2, 5], [2, 6], [-5, 2] ]
    best_sol = [random.randint(x_range[0][0], x_range[0][1]),
           random.randint(x_range[1][0], x_range[1][1]),
           random.randint(x_range[2][0], x_range[2][1])]

    while True:
        best_evaluate = evaluate(best_sol[0], best_sol[1], best_sol[2])
        current_best_value = best_evaluate
        sols = [best_sol]

        for i in xrange(len(best_sol)):
            if best_sol[i] > x_range[i][0]:
                sols.append(best_sol[0:i] + [best_sol[i]-1] + best_sol[i+1:])
            if best_sol[i] < x_range[i][1]:
                sols.append(best_sol[0:i] + [best_sol[i]+1] + best_sol[i+1:])
        print sols
        for s in sols:
            el = evaluate(s[0], s[1], s[2])
            if el < best_evaluate:
                best_sol = s
                best_evaluate = el
        if best_evaluate == current_best_value:
            break

    print 'best sol:', current_best_value, best_sol
某次运行结果如下:

[[0, 5, 1], [-1, 5, 1], [1, 5, 1], [0, 4, 1], [0, 6, 1], [0, 5, 0], [0, 5, 2]]
[[-1, 5, 1], [-2, 5, 1], [0, 5, 1], [-1, 4, 1], [-1, 6, 1], [-1, 5, 0], [-1, 5, 2]]
[[-2, 5, 1], [-1, 5, 1], [-2, 4, 1], [-2, 6, 1], [-2, 5, 0], [-2, 5, 2]]
[[-2, 4, 1], [-1, 4, 1], [-2, 3, 1], [-2, 5, 1], [-2, 4, 0], [-2, 4, 2]]
[[-2, 3, 1], [-1, 3, 1], [-2, 2, 1], [-2, 4, 1], [-2, 3, 0], [-2, 3, 2]]
[[-2, 2, 1], [-1, 2, 1], [-2, 3, 1], [-2, 2, 0], [-2, 2, 2]]
[[-2, 2, 2], [-1, 2, 2], [-2, 3, 2], [-2, 2, 1]]
best sol: -2 [-2, 2, 2]


可以看到,最优解是-2,对应的x1、x2、x3分别取值-2、2、2。

三、如何找到全局最优

爬山法获取的最优解的可能是局部最优,如果要获得更好的解,多次使用爬山算法(需要从不同的初始解开始爬山),从多个局部最优解中找出最优解,而这个最优解也有可能是全局最优解。

另外,模拟退火算法也是一个试图找到全局最优解的算法。

 

相关文章

  • python TK库简单应用(实时显示子进程输出)

    python TK库简单应用(实时显示子进程输出)

    这篇文章主要介绍了python TK库简单应用(实时显示子进程输出),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-10-10
  • Python中作用域的深入讲解

    Python中作用域的深入讲解

    这篇文章主要给大家介绍了关于Python中作用域的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2018-12-12
  • python实现百度文库自动化爬取

    python实现百度文库自动化爬取

    项目是合法项目,只是进行数据解析而已,不能下载看不到的内容.部分文档在电脑端不能预览,但是在手机端可以预览,所有本项目把浏览器浏览格式改成手机端,支持Windows和Ubuntu. 本项目使用的是chromedriver来控制chrome来模拟人来操作来进行文档爬取
    2021-04-04
  • django 做 migrate 时 表已存在的处理方法

    django 做 migrate 时 表已存在的处理方法

    今天小编就为大家分享一篇django 做 migrate 时 表已存在的处理方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • 举例讲解Linux系统下Python调用系统Shell的方法

    举例讲解Linux系统下Python调用系统Shell的方法

    这篇文章主要介绍了举例讲解Linux系统下Python调用系统Shell的方法,包括用Python和shell读取文件某一行的实例,需要的朋友可以参考下
    2015-11-11
  • Python BeautifulSoup中文乱码问题的2种解决方法

    Python BeautifulSoup中文乱码问题的2种解决方法

    这篇文章主要介绍了Python BeautifulSoup中文乱码问题的2种解决方法,需要的朋友可以参考下
    2014-04-04
  • python中利用队列asyncio.Queue进行通讯详解

    python中利用队列asyncio.Queue进行通讯详解

    asyncio是Python 3.4版本引入的标准库,直接内置了对异步IO的支持。 下面这篇文章主要给大家介绍了关于python中利用队列asyncio.Queue进行通讯的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下。
    2017-09-09
  • 基于python3监控服务器状态进行邮件报警

    基于python3监控服务器状态进行邮件报警

    这篇文章主要介绍了基于python3监控服务器状态进行邮件报警,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-10-10
  • Django models.py应用实现过程详解

    Django models.py应用实现过程详解

    这篇文章主要介绍了Django models.py应用实现过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • 把vgg-face.mat权重迁移到pytorch模型示例

    把vgg-face.mat权重迁移到pytorch模型示例

    今天小编就为大家分享一篇把vgg-face.mat权重迁移到pytorch模型示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12

最新评论