Python标准库之多进程(multiprocessing包)介绍

 更新时间:2014年11月25日 10:27:50   投稿:junjie  
这篇文章主要介绍了Python标准库之多进程(multiprocessing包)介绍,本文讲解了进程池、共享资源、共享内存、Manager等内容,需要的朋友可以参考下

在初步了解Python多进程之后,我们可以继续探索multiprocessing包中更加高级的工具。这些工具可以让我们更加便利地实现多进程。

进程池

进程池 (Process Pool)可以创建多个进程。这些进程就像是随时待命的士兵,准备执行任务(程序)。一个进程池中可以容纳多个待命的士兵。

“三个进程的进程池”

比如下面的程序:

复制代码 代码如下:

import multiprocessing as mul
def f(x):
    return x**2
pool = mul.Pool(5)
rel  = pool.map(f,[1,2,3,4,5,6,7,8,9,10])
print(rel)

我们创建了一个容许5个进程的进程池 (Process Pool) 。Pool运行的每个进程都执行f()函数。我们利用map()方法,将f()函数作用到表的每个元素上。这与built-in的map()函数类似,只是这里用5个进程并行处理。如果进程运行结束后,还有需要处理的元素,那么的进程会被用于重新运行f()函数。除了map()方法外,Pool还有下面的常用方法。

apply_async(func,args)  从进程池中取出一个进程执行func,args为func的参数。它将返回一个AsyncResult的对象,你可以对该对象调用get()方法以获得结果。

close()  进程池不再创建新的进程

join()   wait进程池中的全部进程。必须对Pool先调用close()方法才能join。

练习

有下面一个文件download.txt。

复制代码 代码如下:

www.sina.com.cn
www.163.com
www.iciba.com
www.cnblogs.com
www.qq.com
www.douban.com

使用包含3个进程的进程池下载文件中网站的首页。(你可以使用subprocess调用wget或者curl等下载工具执行具体的下载任务)

共享资源

我们在Python多进程初步已经提到,我们应该尽量避免多进程共享资源。多进程共享资源必然会带来进程间相互竞争。而这种竞争又会造成race condition,我们的结果有可能被竞争的不确定性所影响。但如果需要,我们依然可以通过共享内存和Manager对象这么做。

共享“资源”

共享内存

在Linux进程间通信中,我们已经讲述了共享内存(shared memory)的原理,这里给出用Python实现的例子:

复制代码 代码如下:

# modified from official documentation
import multiprocessing
def f(n, a):
    n.value   = 3.14
    a[0]      = 5
num   = multiprocessing.Value('d', 0.0)
arr   = multiprocessing.Array('i', range(10))
p = multiprocessing.Process(target=f, args=(num, arr))
p.start()
p.join()
print num.value
print arr[:]

这里我们实际上只有主进程和Process对象代表的进程。我们在主进程的内存空间中创建共享的内存,也就是Value和Array两个对象。对象Value被设置成为双精度数(d), 并初始化为0.0。而Array则类似于C中的数组,有固定的类型(i, 也就是整数)。在Process进程中,我们修改了Value和Array对象。回到主程序,打印出结果,主程序也看到了两个对象的改变,说明资源确实在两个进程之间共享。

Manager

Manager对象类似于服务器与客户之间的通信 (server-client),与我们在Internet上的活动很类似。我们用一个进程作为服务器,建立Manager来真正存放资源。其它的进程可以通过参数传递或者根据地址来访问Manager,建立连接后,操作服务器上的资源。在防火墙允许的情况下,我们完全可以将Manager运用于多计算机,从而模仿了一个真实的网络情境。下面的例子中,我们对Manager的使用类似于shared memory,但可以共享更丰富的对象类型。

复制代码 代码如下:

import multiprocessing
def f(x, arr, l):
    x.value = 3.14
    arr[0] = 5
    l.append('Hello')
server = multiprocessing.Manager()
x    = server.Value('d', 0.0)
arr  = server.Array('i', range(10))
l    = server.list()
proc = multiprocessing.Process(target=f, args=(x, arr, l))
proc.start()
proc.join()
print(x.value)
print(arr)
print(l)

Manager利用list()方法提供了表的共享方式。实际上你可以利用dict()来共享词典,Lock()来共享threading.Lock(注意,我们共享的是threading.Lock,而不是进程的mutiprocessing.Lock。后者本身已经实现了进程共享)等。 这样Manager就允许我们共享更多样的对象。

我们在这里不深入讲解Manager在远程情况下的应用。有机会的话,会在网络应用中进一步探索。

总结

Pool
Shared memory, Manager

相关文章

  • Python中命令行参数argparse模块的使用

    Python中命令行参数argparse模块的使用

    argparse是python自带的命令行参数解析包,可以用来方便的服务命令行参数。本文将通过示例和大家详细讲讲argparse的使用,需要的可以参考一下
    2023-02-02
  • pyinstaller打包后,配置文件无法正常读取的解决

    pyinstaller打包后,配置文件无法正常读取的解决

    这篇文章主要介绍了pyinstaller打包后,配置文件无法正常读取的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-02-02
  • Python使用configparser库读取配置文件

    Python使用configparser库读取配置文件

    这篇文章主要介绍了Python使用configparser库读取配置文件,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • Python列表list操作相关知识小结

    Python列表list操作相关知识小结

    今天,本喵带大家仔细温习一下Python的列表,温故而知新,不亦说乎,需要的朋友可以参考下
    2020-01-01
  • Python绘制数据动态图的方法详解

    Python绘制数据动态图的方法详解

    这篇文章主要为大家详细介绍了如何利用Python语言绘制好看的数据动态图,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手尝试一下
    2022-07-07
  • python中将函数赋值给变量时需要注意的一些问题

    python中将函数赋值给变量时需要注意的一些问题

    变量赋值是我们在日常开发中经常会遇到的一个问题,下面这篇文章主要给大家介绍了关于python中将函数赋值给变量时需要注意的一些问题,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面来一起看看吧。
    2017-08-08
  • Python中的shutil模块使用详解

    Python中的shutil模块使用详解

    这篇文章主要介绍了Python中的shutil模块使用详解,shutil库作为os模块的补充,提供了复制、移动、删除、压缩、解压等操作,这些 os 模块中一般是没有提供的,需要的朋友可以参考下
    2023-09-09
  • python去掉空白行的多种实现代码

    python去掉空白行的多种实现代码

    这篇文章主要介绍了python去掉空白行实现代码,需要的朋友可以参考下
    2018-03-03
  • 让Django支持Sql Server作后端数据库的方法

    让Django支持Sql Server作后端数据库的方法

    今天小编就为大家分享一篇让Django支持Sql Server作后端数据库的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • python实现根据图标提取分类应用程序实例

    python实现根据图标提取分类应用程序实例

    这篇文章主要介绍了python实现根据图标提取分类应用程序实例,是非常实用的应用程序技巧,需要的朋友可以参考下
    2014-09-09

最新评论