python多线程用法实例详解

 更新时间:2015年01月15日 09:26:23   投稿:shichen2014  
这篇文章主要介绍了python多线程用法,以实例形式较为详细的分析了线程同步、队列等概念及用法技巧,需要的朋友可以参考下

本文实例分析了python多线程用法。分享给大家供大家参考。具体如下:

今天在学习尝试学习python多线程的时候,突然发现自己一直对super的用法不是很清楚,所以先总结一些遇到的问题。当我尝试编写下面的代码的时候:

复制代码 代码如下:
class A():
    def __init__( self ):
        print "A"
class B( A ):
    def __init__( self ):
        super( B, self ).__init__(  )
# A.__init__( self )
        print "B"
b = B()

出现:

super( B, self ).__init__()

TypeError: must be type, not classobj

最后发现原来是python中的新式类的问题,也就是A必须是新式类。解决方法如下两种:

(1)

复制代码 代码如下:
class A( object ):
    def __init__( self ):
        print "A"
class B( A ):
    def __init__( self ):
        super( B, self ).__init__(  )
# A.__init__( self )       ##这条语句是旧式的,存在潜在的问题,应该避免使用
        print "B"
b = B()

(2)

复制代码 代码如下:
__metaclass__=type
class A():
    def __init__( self ):
        print "A"
class B( A ):
    def __init__( self ):
        super( B, self ).__init__(  )
# A.__init__( self )    ##这条语句是旧式的,存在潜在的问题,应该避免使用
        print "B"
b = B()

注意:如果在super( B, self ).__init__(  )

语句中添加self,也就是super( B, self ).__init__( self ),会出现如下的错误:

    super( B, self ).__init__( self )

TypeError: __init__() takes exactly 1 argument (2 given)

以上只是一点点本人的心得笔记,呵呵。

复制代码 代码如下:
import threading, time
class myThread( threading.Thread ):
    def __init__( self, threadname = "" ):
        #threading.Thread.__init__( self, name = threadname )
        super( myThread, self ).__init__( name = threadname )
    def run( self ):
        print "starting====", self.name, time.ctime()
        time.sleep( 5 )
        print "end====", self.name, time.ctime(),
 
m = myThread( "m" )
n = myThread( "n" )
 
m.start()
n.start()

输出的结果:

starting==== m Mon Aug 08 21:55:41 2011

starting==== n Mon Aug 08 21:55:41 2011

如果一个进程的主线程运行完毕而子线程还在执行的话,那么进程就不会退出,直到所有子线程结束为止。比如下面的例子:

复制代码 代码如下:
import threading, time
class myThread( threading.Thread ):
    def __init__( self, threadname = "" ):
        #threading.Thread.__init__( self, name = threadname )
        super( myThread, self ).__init__( name = threadname )
    def run( self ):
        print "starting====", self.name, time.ctime()
        time.sleep( 5 )
        print "end====", self.name, time.ctime(),
 
m = myThread( "m" )
m.start()
print "main end"
print

输出的结果为:

starting==== m Mon Aug 08 22:01:06 2011

main end

end==== m Mon Aug 08 22:01:11 2011

也就是主进程结束之后,子进程还没有结束

如果我们想在主进程结束的时候,子进程也结束的话,我们就应该使用setDaemon()函数。

实例如下:

复制代码 代码如下:
import threading, time
class myThread( threading.Thread ):
    def __init__( self, threadname = "" ):
        #threading.Thread.__init__( self, name = threadname )
        super( myThread, self ).__init__( name = threadname )
    def run( self ):
        print "starting====", self.name, time.ctime()
        time.sleep( 5 )
        print "end====", self.name, time.ctime(),
 
m = myThread( "m" )
m.setDaemon( True )
m.start()
print "main end"
print

输出的结果为:starting====main end m Mon Aug 08 22:02:58 2011

可以看出,并没有打印出子进程m结束的时候本应该打印的“end===…”

简单的线程同步

个执行线程经常要共享数据,如果仅仅读取共享数据还好,但是如果多个线程要修改共享数据的话就可能出现无法预料的结果。

假如两个线程对象t1和t2都要对数值num=0进行增1运算,那么t1和t2都各对num修改10次的话,那么num最终的结果应该为20。但是如果当t1取得num的值时(假如此时num为0),系统把t1调度为“sleeping”状态,而此时t2转换为“running”状态,此时t2获得的num的值也为0,然后他把num+1的值1赋给num。系统又把t2转化为“sleeping”状态,t1为“running”状态,由于t1已经得到num值为0,所以他也把num+1的值赋给了num为1。本来是2次增1运行,结果却是num只增了1次。类似这样的情况在多线程同时执行的时候是有可能发生的。所以为了防止这类情况的出现就要使用线程同步机制。

最简单的同步机制就是“锁”

锁对象用threading.RLock类创建

复制代码 代码如下:
mylock = threading.RLock()

如何使用锁来同步线程呢?线程可以使用锁的acquire() (获得)方法,这样锁就进入“locked”状态。每次只有一个线程可以获得锁。如果当另一个线程试图获得这个锁的时候,就会被系统变为“blocked”状态,直到那个拥有锁的线程调用锁的release() (释放)方法,这样锁就会进入“unlocked”状态。“blocked”状态的线程就会收到一个通知,并有权利获得锁。如果多个线程处于“blocked”状态,所有线程都会先解除“blocked”状态,然后系统选择一个线程来获得锁,其他的线程继续沉默(“blocked”)。

复制代码 代码如下:
import threading
mylock = threading.RLock()
class mythread(threading.Thread)
    ...
    def run(self ...):
        ...     #此处 不可以 放置修改共享数据的代码
        mylock.acquire()
        ...     #此处 可以 放置修改共享数据的代码
        mylock.release()
        ...     #此处 不可以 放置修改共享数据的代码

我们把修改共享数据的代码称为“临界区”,必须将所有“临界区”都封闭在同一锁对象的acquire()和release()方法调用之间。

锁只能提供最基本的同步级别。有时需要更复杂的线程同步,例如只在发生某些事件时才访问一个临界区(例如当某个数值改变时)。这就要使用“条件变量”。

条件变量用threading.Condition类创建

复制代码 代码如下:
mycondition = threading.Condition()

条件变量是如何工作的呢?首先一个线程成功获得一个条件变量后,调用此条件变量的wait()方法会导致这个线程释放这个锁,并进入“blocked”状态,直到另一个线程调用同一个条件变量的notify()方法来唤醒那个进入“blocked”状态的线程。如果调用这个条件变量的notifyAll()方法的话就会唤醒所有的在等待的线程。

如果程序或者线程永远处于“blocked”状态的话,就会发生死锁。所以如果使用了锁、条件变量等同步机制的话,一定要注意仔细检查,防止死锁情况的发生。对于可能产生异常的临界区要使用异常处理机制中的finally子句来保证释放锁。等待一个条件变量的线程必须用notify()方法显式的唤醒,否则就永远沉默。保证每一个wait()方法调用都有一个相对应的notify()调用,当然也可以调用notifyAll()方法以防万一。

同步队列

我们经常会采用生产者/消费者关系的两个线程来处理一个共享缓冲区的数据。例如一个生产者线程接受用户数据放入一个共享缓冲区里,等待一个消费者线程对数据取出处理。但是如果缓冲区的太小而生产者和消费者两个异步线程的速度不同时,容易出现一个线程等待另一个情况。为了尽可能的缩短共享资源并以相同速度工作的各线程的等待时间,我们可以使用一个“队列”来提供额外的缓冲区。

创建一个“队列”对象,可以使用如下代码:

复制代码 代码如下:
import Queue
myqueue = Queue.Queue(maxsize = 10)

Queue.Queue类即是一个队列的同步实现。队列长度可为无限或者有限。可通过Queue的构造函数的可选参数maxsize来设定队列长度。如果maxsize小于1就表示队列长度无限。

将一个值放入队列中:

myqueue.put(10)

调用队列对象的put()方法在队尾插入一个项目。put()有两个参数,第一个item为必需的,为插入项目的值;第二个block为可选参数,默认为1。如果队列当前为空且block为1,put()方法就使调用线程暂停,直到空出一个数据单元。如果block为0,put方法将引发Full异常。

将一个值从队列中取出:

myqueue.get()

调用队列对象的get()方法从队头删除并返回一个项目。可选参数为block,默认为1。如果队列为空且block为1,get()就使调用线程暂停,直至有项目可用。如果block为0,队列将引发Empty异常。

我们用一个例子来展示如何使用Queue:

复制代码 代码如下:
# queue_example.py
from Queue import Queue
import threading
import random
import time
 
# Producer thread
class Producer( threading.Thread ):
    def __init__( self, threadname, queue ):
        threading.Thread.__init__( self, name = threadname )
        self.sharedata = queue
    def run( self ):
        for i in range( 20 ):
            print self.getName(), 'adding', i, 'to queue'
            self.sharedata.put( i )
            time.sleep( random.randrange( 10 ) / 10.0 )
            print self.getName(), 'Finished'
 
# Consumer thread
class Consumer( threading.Thread ):
    def __init__( self, threadname, queue ):
        threading.Thread.__init__( self, name = threadname )
        self.sharedata = queue
    def run( self ):
        for i in range( 20 ):
            print self.getName(), 'got a value:', self.sharedata.get()
            time.sleep( random.randrange( 10 ) / 10.0 )
            print self.getName(), 'Finished'
 
# Main thread
def main():
    queue = Queue()
    producer = Producer( 'Producer', queue )
    consumer = Consumer( 'Consumer', queue )
 
    print 'Starting threads ...'
    producer.start()
    consumer.start()
 
    producer.join()
    consumer.join()
 
    print 'All threads have terminated.'
 
if __name__ == '__main__':
    main()

程序输出的结果为:

Starting threads ...

Producer adding 0 to queue

Consumer got a value: 0

Producer Finished

Producer adding 1 to queue

Producer Finished

Producer adding 2 to queue

Consumer Finished

Consumer got a value: 1

Consumer Finished

Consumer got a value: 2

Consumer Finished

Consumer got a value: Producer Finished

Producer adding 3 to queue

3

Consumer Finished

Consumer got a value: Producer Finished

Producer adding 4 to queue

4

ConsumerProducer Finished

 ConsumerFinished

got a value:Producer adding 5 to queue

5

Consumer Finished

Consumer got a value: Producer Finished

Producer adding 6 to queue

Producer Finished

Producer adding 7 to queue

6

Consumer Finished

Consumer got a value: 7

Producer Finished

Producer adding 8 to queue

Producer Finished

Producer adding 9 to queue

Consumer Finished

Consumer got a value: 8

ConsumerProducer  FinishedFinished

 

ConsumerProducer  got a value:adding 109

to queue

Producer Finished

Producer adding 11 to queue

Producer Finished

Producer adding 12 to queue

ConsumerProducer  FinishedFinished

 

ConsumerProducer  got a value:adding 1310

to queue

Producer Finished

Producer adding 14 to queue

Consumer Finished

Consumer got a value: 11

Producer Finished

Producer adding 15 to queue

Producer Finished

Producer adding 16 to queue

Producer Finished

Producer adding 17 to queue

Producer Finished

Producer adding 18 to queue

Consumer Finished

Consumer got a value: 12

Producer Finished

Producer adding 19 to queue

Producer Finished

Consumer Finished

Consumer got a value: 13

Consumer Finished

Consumer got a value: 14

Consumer Finished

Consumer got a value: 15

Consumer Finished

Consumer got a value: 16

Consumer Finished

Consumer got a value: 17

Consumer Finished

Consumer got a value: 18

Consumer Finished

Consumer got a value: 19

Consumer Finished

All threads have terminated.

希望本文所述对大家的Python程序设计有所帮助。

相关文章

  • 简单谈谈python中的多进程

    简单谈谈python中的多进程

    multiprocessing模块是python库中最高级和功能最强大的模块之一。本文就来给大家简单讲讲multiprocessing一般性技巧
    2016-11-11
  • python实现websocket的客户端压力测试

    python实现websocket的客户端压力测试

    这篇文章主要为大家详细介绍了python实现websocket的客户端压力测试,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-06-06
  • Python爬虫入门案例之爬取二手房源数据

    Python爬虫入门案例之爬取二手房源数据

    读万卷书不如行万里路,学的扎不扎实要通过实战才能看出来,今天小编给大家带来一份python爬取二手房源信息的案例,可以用来直观的了解房价行情,大家可以在过程中查缺补漏,看看自己掌握程度怎么样
    2021-10-10
  • 基于Flask框架添加多个AI模型的API并进行交互

    基于Flask框架添加多个AI模型的API并进行交互

    这篇文章主要介绍了如何基于 Flask 框架开发 AI 模型 API 管理系统,允许用户添加、删除不同 AI 模型的 API 密钥,感兴趣的可以了解下
    2025-03-03
  • 带你精通Python正则表达式

    带你精通Python正则表达式

    本文将给大家分享一份关于比较详细的Python正则表达式宝典,学会之后你将对正则表达式达到精通的状态,一起来学习下面内容吧
    2021-08-08
  • Python中pip工具的安装以及使用

    Python中pip工具的安装以及使用

    今天给大家带来关于Python的相关知识,文章围绕着pip工具的安装以及使用展开,文中有非常详细的图文示例及介绍,需要的朋友可以参考下
    2021-06-06
  • django实现日志按日期分割

    django实现日志按日期分割

    这篇文章主要介绍了django实现日志按日期分割,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • Pandas之缺失数据的实现

    Pandas之缺失数据的实现

    这篇文章主要介绍了Pandas之缺失数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • 机器学习、深度学习和神经网络之间的区别和联系

    机器学习、深度学习和神经网络之间的区别和联系

    机器学习>神经网络>深度学习≈深度神经网络,机器学习包括了神经网络在内的许多算法,而神经网络又可以分为浅度神经网络和深度神经网络,深度学习是使用了深度神经网络的技术,虽然机器学习、深度学习和神经网络是不同的,但在构建复杂系统时,许多相关概念是混合在一起的
    2024-02-02
  • 使用Python中OpenCV和深度学习进行全面嵌套边缘检测

    使用Python中OpenCV和深度学习进行全面嵌套边缘检测

    这篇文章主要介绍了使用Python中OpenCV和深度学习进行全面嵌套边缘检测,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-05-05

最新评论