仅利用30行Python代码来展示X算法

 更新时间:2015年04月01日 17:08:54   作者:Ali Assaf  
这篇文章主要介绍了仅利用30行Python代码来展示X算法,同时还有对算法实现的复杂度的说明,需要的朋友可以参考下

假如你对数独解法感兴趣,你可能听说过精确覆盖问题。给定全集 X 和 X 的子集的集合 Y ,存在一个 Y 的子集 Y*,使得 Y* 构成 X 的一种分割。

这儿有个Python写的例子。
 

X = {1, 2, 3, 4, 5, 6, 7}
Y = {
  'A': [1, 4, 7],
  'B': [1, 4],
  'C': [4, 5, 7],
  'D': [3, 5, 6],
  'E': [2, 3, 6, 7],
  'F': [2, 7]}

这个例子的唯一解是['B', 'D', 'F']。

精确覆盖问题是NP完备(译注:指没有任何一个够快的方法可以在合理的时间内,意即多项式时间 找到答案)。X算法是由大牛高德纳发明并实现。他提出了一种高效的实现技术叫舞蹈链,使用双向链表来表示该问题的矩阵。

然而,舞蹈链实现起来可能相当繁琐,并且不易写地正确。接下来就是展示Python奇迹的时刻了!有天我决定用Python来编写X 算法,并且我想出了一个有趣的舞蹈链变种。
算法

主要的思路是使用字典来代替双向链表来表示矩阵。我们已经有了 Y。从它那我们能快速的访问每行的列元素。现在我们还需要生成行的反向表,换句话说就是能从列中快速访问行元素。为实现这个目的,我们把X转换为字典。在上述的例子中,它应该写为
 

X = {
  1: {'A', 'B'},
  2: {'E', 'F'},
  3: {'D', 'E'},
  4: {'A', 'B', 'C'},
  5: {'C', 'D'},
  6: {'D', 'E'},
  7: {'A', 'C', 'E', 'F'}}

眼尖的读者能注意到这跟Y的表示有轻微的不同。事实上,我们需要能快速删除和添加行到每列,这就是为什么我们使用集合。另一方面,高德纳没有提到这点,实际上整个算法中所有行是保持不变的。

以下是算法的代码。
 

def solve(X, Y, solution=[]):
  if not X:
    yield list(solution)
  else:
    c = min(X, key=lambda c: len(X[c]))
    for r in list(X[c]):
      solution.append(r)
      cols = select(X, Y, r)
      for s in solve(X, Y, solution):
        yield s
      deselect(X, Y, r, cols)
      solution.pop()
 
def select(X, Y, r):
  cols = []
  for j in Y[r]:
    for i in X[j]:
      for k in Y[i]:
        if k != j:
          X[k].remove(i)
    cols.append(X.pop(j))
  return cols
 
def deselect(X, Y, r, cols):
  for j in reversed(Y[r]):
    X[j] = cols.pop()
    for i in X[j]:
      for k in Y[i]:
        if k != j:
          X[k].add(i)

真的只有 30 行!
格式化输入

在解决实际问题前,我们需要将输入转换为上面描述的格式。可以这样简单处理

X = {j: set(filter(lambda i: j in Y[i], Y)) for j in X}

但这样太慢了。假如设 X 大小为 m,Y 的大小为 n,则迭代次数为 m*n。在这例子中的数独格子大小为 N,那需要 N^5 次。我们有更好的办法。
 

X = {j: set() for j in X}
for i in Y:
  for j in Y[i]:
    X[j].add(i)

这还是 O(m*n) 的复杂度,但是是最坏情况。平均情况下它的性能会好很多,因为它不需要遍历所有的空格位。在数独的例子中,矩阵中每行恰好有 4 个条目,无论大小,因此它有N^3的复杂度。
优点

  •     简单: 不需要构造复杂的数据结构,所有用到的结构Python都有提供。
  •     可读性: 上述第一个例子是直接从Wikipedia上的范例直接转录下来的!
  •     灵活性: 可以很简单得扩展来解决数独。

求解数独

我们需要做的就是把数独描述成精确覆盖问题。这里有完整的数独解法代码,它能处理任意大小,3×3,5×5,即使是2×3,所有代码少于100行,并包含doctest!(感谢Winfried Plappert 和 David Goodger的评论和建议)

相关文章

  • python如何查看微信消息撤回

    python如何查看微信消息撤回

    这篇文章主要为大家详细介绍了python实现查看微信消息撤回的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-11-11
  • 简单了解Python多态与属性运行原理

    简单了解Python多态与属性运行原理

    这篇文章主要介绍了简单了解Python多态与属性运行原理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • 解决pycharm 远程调试 上传 helpers 卡住的问题

    解决pycharm 远程调试 上传 helpers 卡住的问题

    今天小编就为大家分享一篇解决pycharm 远程调试 上传 helpers 卡住的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06
  • Python定制类你不知道的魔术方法

    Python定制类你不知道的魔术方法

    你知道什么是定制类?Python中包含很多内置的(Built-in)函数,异常,对象。分别有不同的作用,我们可以重写这些功能,希望对大家有所帮助。一起跟随小编过来看看吧
    2022-07-07
  • Python 加密的实例详解

    Python 加密的实例详解

    这篇文章主要介绍了 Python 加密的实例详解的相关资料,这里提供了两种实现方法,需要的朋友可以参考下
    2017-10-10
  • 如何用Python实现RSA加密算法

    如何用Python实现RSA加密算法

    RSA加密算法是一种非对称加密算法,即使用不同的密钥进行加密和解密,下面这篇文章主要给大家介绍了关于如何用Python实现RSA加密算法的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2023-06-06
  • 基于Pytorch实现逻辑回归

    基于Pytorch实现逻辑回归

    这篇文章主要为大家详细介绍了基于Pytorch实现逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-07-07
  • LyScript获取上一条与下一条汇编指令的方法详解

    LyScript获取上一条与下一条汇编指令的方法详解

    LyScript 插件默认并没有提供上一条与下一条汇编指令的获取功能,当然你可以使用LyScriptTools工具包直接调用内置命令得到,本文就为大家详细讲讲如何实现
    2022-07-07
  • 使用OpenCV-python3实现滑动条更新图像的Canny边缘检测功能

    使用OpenCV-python3实现滑动条更新图像的Canny边缘检测功能

    这篇文章主要介绍了使用OpenCV-python3实现滑动条更新图像的Canny边缘检测功能,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-12-12
  • Python 中导入文本文件的示例代码

    Python 中导入文本文件的示例代码

    这篇文章主要介绍了如何在 Python 中导入文本文件,在Python中导入文本文件是很常见的操作,我们可以使用内置的open函数和with语句来读取或写入文本文件,需要的朋友可以参考下
    2023-05-05

最新评论