Python while、for、生成器、列表推导等语句的执行效率测试

 更新时间:2015年06月03日 11:34:21   投稿:junjie  
这篇文章主要介绍了Python while、for、生成器、列表推导等语句的执行效率测试,本文分别用两段程序测算出了各语句的执行效率,然后总结了什么情况下使用什么语句优先使用的语句等,需要的朋友可以参考下

一个功能的实现,可以用多种语句来实现,比如说:while语句、for语句、生成器、列表推导、内置函数等实现,然而他们的效率并不一样。写了一个小程序来测试它们执行的效率。

测试内容:
将一个数字大小为20万的数字,依次取绝对值,放到列表中,测试重复1千次.
测试程序:

复制代码 代码如下:

import time,sys 
reps = 1000                #测试重复次数 
nums = 200000              #测试时数字大小 
 
 
def tester(func,*args):    #总体测试函数 
    startTime = time.time() 
    for i in range(reps): 
        func(*args) 
    elapsed = time.time() - startTime #用time模块来测试,结束时间与开始时间差 
    return elapsed 
 
def while_Statement():     #while循环实现 
    res = [] 
    x   = 0 
    while nums > x: 
        x += 1 
        res.append(abs(x)) 
 
def for_Statement():       #for循环实现 
    res = [] 
    for x in range(nums): 
        res.append(abs(x)) 
 
def generator_Expression():#生成器实现 
    res = list(abs(x) for x in range(nums)) 
 
def list_Comprehension():  #列表解析实现 
    res = [abs(x) for x in range(nums)] 
 
 
def map_Function():        #内置函数map实现 
    res = map(abs, range(nums)) 
 
 
print sys.version          #打印系统版本 
tests = [while_Statement, for_Statement, generator_Expression, list_Comprehension, map_Function] 
for testfunc in tests:     #将待测函数放置列表中依次遍历 
    print testfunc.__name__.ljust(20),': ',tester(testfunc)  # 
 

测试结果:

复制代码 代码如下:

>>>  
2.7.4 (default, Apr  6 2013, 19:55:15) [MSC v.1500 64 bit (AMD64)] 
while_Statement      :  84.5769999027 
for_Statement        :  75.2709999084 
generator_Expression :  62.3519999981 
list_Comprehension   :  60.4090001583 
map_Function         :  47.5629999638 

改写程序:
复制代码 代码如下:

import sys 
nums = 100 
 
def while_Statement(): 
    res = [] 
    x   = 0 
    while nums > x: 
        x += 1 
        res.append(abs(x)) 
 
def for_Statement(): 
    res = [] 
    for x in range(nums): 
        res.append(abs(x)) 
 
def generator_Expression(): 
    res = list(abs(x) for x in range(nums)) 
 
def list_Comprehension(): 
    res = [abs(x) for x in range(nums)] 
 
 
def map_Function(): 
    res = map(abs, range(nums)) 
 
if __name__=='__main__': 
    import timeit            #用timeit模块来测试 
    print sys.version 
    funcs = [while_Statement, for_Statement, generator_Expression, list_Comprehension, map_Function] 
    for func in funcs: 
        print func.__name__.ljust(20),': ',timeit.timeit("func()", setup="from __main__ import func") 

测试结果:

复制代码 代码如下:

>>>  
2.7.4 (default, Apr  6 2013, 19:55:15) [MSC v.1500 64 bit (AMD64)] 
while_Statement      :  37.1800067428 
for_Statement        :  30.3999109329 
generator_Expression :  27.2597866441 
list_Comprehension   :  17.386223449 
map_Function         :  12.7386868963 

测试分析:

用time模块,和timeit模块两种测试方式测试了很多组数字,得出的结果是执行内置函数最快,其次就是列表推导,再其次生成器和for循环,while循环最慢。一般最快的使用内置函数的方法要比使用最慢的while快两倍以上。简单分析下原因:内置函数比如说map,filter,reduce(在Python3.0中移除)基本上都是用C语言来实现的,所以速度是最快的,列表推导内的迭代在解释器内是以C语言的速度运行的(一般是for循环的两倍,对大型文件操作而言,用列表推导效果尤其明显),相比较for循环代码是在PVM步进运行要快的多。但for循环里面含range(),相对速度也会快些,while语句是纯粹用Python代码写成,所以速度最慢。所以函数式编程最好使用内置函数,然后才考虑使用列表推导或for循环。最好不用while循环.

相关文章

  • Python异步在非阻塞子进程中运行命令详解

    Python异步在非阻塞子进程中运行命令详解

    这篇文章主要为大家介绍了Python异步在非阻塞子进程中运行命令详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-03-03
  • 在PyCharm下使用 ipython 交互式编程的方法

    在PyCharm下使用 ipython 交互式编程的方法

    今天小编就为大家分享一篇在PyCharm下使用 ipython 交互式编程的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • python将MongoDB里的ObjectId转换为时间戳的方法

    python将MongoDB里的ObjectId转换为时间戳的方法

    这篇文章主要介绍了python将MongoDB里的ObjectId转换为时间戳的方法,涉及Python操作MongoDB及字符串转换的技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-03-03
  • NumPy双曲函数与集合操作详解

    NumPy双曲函数与集合操作详解

    NumPy 提供了 sinh()、cosh() 和 tanh() 等 ufunc,它们接受弧度值并生成相应的双曲正弦、双曲余弦和双曲正切值,我们可以使用 NumPy 的 unique() 方法从任何数组中找到唯一元素,本文给大家详细介绍了NumPy双曲函数与集合操作,需要的朋友可以参考下
    2024-06-06
  • python多进程并行代码实例

    python多进程并行代码实例

    这篇文章主要介绍了python多进程并行代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • 使用Python编程分析火爆全网的鱿鱼游戏豆瓣影评

    使用Python编程分析火爆全网的鱿鱼游戏豆瓣影评

    本文来为大家介绍如何使用Python爬取影评的操作,主要是爬取《鱿鱼游戏》在豆瓣上的一些影评,对数据做一些简单的分析,用数据的角度重新审视下这部剧,有需要的朋友可以借鉴参考下
    2021-10-10
  • selenium自动化测试简单准备

    selenium自动化测试简单准备

    本文主要介绍了selenium自动化测试简单准备,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-01-01
  • 如何使用Python修改matplotlib.pyplot.colorbar的位置以对齐主图

    如何使用Python修改matplotlib.pyplot.colorbar的位置以对齐主图

    使用matplotlib.colors模块可以完成大多数常见的任务,下面这篇文章主要给大家介绍了关于如何使用Python修改matplotlib.pyplot.colorbar的位置以对齐主图的相关资料,需要的朋友可以参考下
    2022-07-07
  • Android分包MultiDex策略详解

    Android分包MultiDex策略详解

    这篇文章主要介绍了Android分包MultiDex策略详解,具有一定参考价值,需要的朋友可以了解下。
    2017-10-10
  • Python pymsql模块的使用

    Python pymsql模块的使用

    这篇文章主要介绍了Python pymsql模块的使用,帮助大家我们利用 python 语言与 mysql 进行链接,感兴趣的朋友可以了解下
    2020-09-09

最新评论