谈谈Python进行验证码识别的一些想法

 更新时间:2016年01月25日 10:26:02   作者:Manning  
关于python验证码识别,主要方法有几类:一类是通过对图片进行处理,然后利用字库特征匹配的方法,一类是图片处理后建立字符对应字典,还有一类是直接利用ocr模块进行识别。不管是用什么方法,都需要首先对图片进行处理,于是试着对下面的验证码进行分析

用python加“验证码”为关键词在baidu里搜一下,可以找到很多关于验证码识别的文章。我大体看了一下,主要方法有几类:一类是通过对图片进行处理,然后利用字库特征匹配的方法,一类是图片处理后建立字符对应字典,还有一类是直接利用ocr模块进行识别。不管是用什么方法,都需要首先对图片进行处理,于是试着对下面的验证码进行分析。

一、图片处理

这个验证码中主要的影响因素是中间的曲线,首先考虑去掉图片中的曲线。考虑了两种算法:
第一种是首先取到曲线头的位置,即x=0时,黑点的位置。然后向后移动x的取值,观察每个x下黑点的位置,判断前后两个相邻黑点之间的距离,如果距离在一定范围内,可以基本判断该点是曲线上的点,最后将曲线上的点全部绘成白色。试了一下这种方法,结果得到的图片效果很一般,曲线不能完全去除,而且容量将字符的线条去除。
第二种考虑用单位面积内点的密度来进行计算。于是首先计算单位面积内点的个数,将单位面积内点个数少于某一指定数的面积去除,剩余的部分基本上就是验证码字符的部分。本例中,为了便于操作,取了5*5做为单位范围,并调整单位面积内点的标准密度为11。处理后的效果:

二、字符验证

这里我使用的方法是利用pytesser进行ocr识别,但由于这类验证码字符的不规则性,使得验证结果的准确性并不是很高。具体哪位大牛,有什么好的办法,希望能给指点一下。

三、准备工作与代码实例

1、PIL、pytesser、tesseract

(1)安装PIL:下载地址:http://www.pythonware.com/products/pil/
(2)pytesser:下载地址:http://code.google.com/p/pytesser/,下载解压后直接放在代码相同的文件夹下,即可使用。
(3)Tesseract OCR engine下载:http://code.google.com/p/tesseract-ocr/,下载后解压,找到tessdata文件夹,用其替换掉pytesser解压后的tessdata文件夹即可。

2、具体代码

#encoding=utf-8
###利用点的密度计算
import Image,ImageEnhance,ImageFilter,ImageDraw
import sys
from pytesser import *
#计算范围内点的个数
def numpoint(im):
w,h = im.size
data = list( im.getdata() )
mumpoint=0
for x in range(w):
for y in range(h):
if data[ y*w + x ] !=255:#255是白色
mumpoint+=1
return mumpoint
#计算5*5范围内点的密度
def pointmidu(im):
w,h = im.size
p=[]
for y in range(0,h,5):
for x in range(0,w,5):
box = (x,y, x+5,y+5)
im1=im.crop(box)
a=numpoint(im1)
if a<11:##如果5*5范围内小于11个点,那么将该部分全部换为白色。
for i in range(x,x+5):
for j in range(y,y+5):
im.putpixel((i,j), 255)
im.save(r'img.jpg')
def ocrend():##识别
image_name = "img.jpg"
im = Image.open(image_name)
im = im.filter(ImageFilter.MedianFilter())
enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
im.save("1.tif")
print image_file_to_string('1.tif') 
if __name__=='__main__':
image_name = "1.png"
im = Image.open(image_name)
im = im.filter(ImageFilter.DETAIL)
im = im.filter(ImageFilter.MedianFilter())
enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
##a=remove_point(im)
pointmidu(im)
ocrend()

本人的这个方法,最终识别率确实不高,写出来,哪位高手有好的思路或者做法,望不惜赐教!

相关文章

  • python数字图像处理之图像自动阈值分割示例

    python数字图像处理之图像自动阈值分割示例

    这篇文章主要为大家介绍了python数字图像处理之图像自动阈值分割示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • Python 实现取矩阵的部分列,保存为一个新的矩阵方法

    Python 实现取矩阵的部分列,保存为一个新的矩阵方法

    今天小编就为大家分享一篇Python 实现取矩阵的部分列,保存为一个新的矩阵方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-11-11
  • 在Python中使用模块的教程

    在Python中使用模块的教程

    这篇文章主要介绍了在Python中使用模块的教程,示例代码基于Python2.x版本,需要的朋友可以参考下
    2015-04-04
  • python绘制云雨图raincloud plot

    python绘制云雨图raincloud plot

    这篇文章主要介绍了python绘制云雨图raincloud plot,Raincloud的Python实现是一个名为PtitPrince的包,它写在seaborn之上,这是一个Python绘图库,用于从pandas数据帧中获取漂亮的绘图
    2022-08-08
  • python 自动轨迹绘制的实例代码

    python 自动轨迹绘制的实例代码

    今天小编就为大家分享一篇python 自动轨迹绘制的实例代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Pandas搭配lambda组合使用详解

    Pandas搭配lambda组合使用详解

    大家好,在之前文章中,我们介绍了很多 Python 用法。喜欢的朋友可以看一下历史文章。今天我给大家讲讲lambda与pandas模块配合使用方法,熟练掌握可以极大地提高数据分析与挖掘的效率
    2022-01-01
  • python 查找轮廓的实现示例

    python 查找轮廓的实现示例

    边缘检测是一种从图像中提取轮廓和特征的技术,本文主要介绍了python查找轮廓的实现示例,具有一定的参考价值,感兴趣的可以了解一下
    2024-07-07
  • Python 50行爬虫抓取并处理图灵书目过程详解

    Python 50行爬虫抓取并处理图灵书目过程详解

    这篇文章主要介绍了Python 50行爬虫抓取并处理图灵书目过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • Python实现微博动态图片爬取详解

    Python实现微博动态图片爬取详解

    这篇文章主要为大家介绍了如何利用Python中的爬虫实现微博动态图片的爬取,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手试一试
    2022-03-03
  • python3 判断列表是一个空列表的方法

    python3 判断列表是一个空列表的方法

    今天小编就为大家分享一篇python3 判断列表是一个空列表的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05

最新评论