Python实现简单多线程任务队列

 更新时间:2016年02月27日 10:44:35   投稿:hebedich  
本文给大家介绍的是使用很简单的代码实现的多线程任务队列,给大家一个思路,希望对大家学习python能够有所帮助

最近我在用梯度下降算法绘制神经网络的数据时,遇到了一些算法性能的问题。梯度下降算法的代码如下(伪代码):

def gradient_descent():
  # the gradient descent code
  plotly.write(X, Y)

一般来说,当网络请求 plot.ly 绘图时会阻塞等待返回,于是也会影响到其他的梯度下降函数的执行速度。

一种解决办法是每调用一次 plotly.write 函数就开启一个新的线程,但是这种方法感觉不是很好。 我不想用一个像 cerely(一种分布式任务队列)一样大而全的任务队列框架,因为框架对于我的这点需求来说太重了,并且我的绘图也并不需要 redis 来持久化数据。

那用什么办法解决呢?我在 python 中写了一个很小的任务队列,它可以在一个单独的线程中调用 plotly.write函数。下面是程序代码。

from threading import Thread
import Queue 
import time

class TaskQueue(Queue.Queue):

首先我们继承 Queue.Queue 类。从 Queue.Queue 类可以继承 get 和 put 方法,以及队列的行为。

def __init__(self, num_workers=1):
  Queue.Queue.__init__(self)
  self.num_workers = num_workers
  self.start_workers()

初始化的时候,我们可以不用考虑工作线程的数量。

def add_task(self, task, *args, **kwargs):
  args = args or ()
  kwargs = kwargs or {}
  self.put((task, args, kwargs))

我们把 task, args, kwargs 以元组的形式存储在队列中。*args 可以传递数量不等的参数,**kwargs 可以传递命名参数。

def start_workers(self):
  for i in range(self.num_workers):
    t = Thread(target=self.worker)
    t.daemon = True
    t.start()

我们为每个 worker 创建一个线程,然后在后台删除。

下面是 worker 函数的代码:

def worker(self):
  while True:
    tupl = self.get()
    item, args, kwargs = self.get()
    item(*args, **kwargs) 
    self.task_done()

worker 函数获取队列顶端的任务,并根据输入参数运行,除此之外,没有其他的功能。下面是队列的代码:

我们可以通过下面的代码测试:

def blokkah(*args, **kwargs):
  time.sleep(5)
  print “Blokkah mofo!”

q = TaskQueue(num_workers=5)

for item in range(1):
  q.add_task(blokkah)

q.join() # wait for all the tasks to finish.

print “All done!”

Blokkah 是我们要做的任务名称。队列已经缓存在内存中,并且没有执行很多任务。下面的步骤是把主队列当做单独的进程来运行,这样主程序退出以及执行数据库持久化时,队列任务不会停止运行。但是这个例子很好地展示了如何从一个很简单的小任务写成像工作队列这样复杂的程序。

def gradient_descent():
  # the gradient descent code
  queue.add_task(plotly.write, x=X, y=Y)

修改之后,我的梯度下降算法工作效率似乎更高了。如果你很感兴趣的话,可以参考下面的代码。

from threading import Thread
import Queue
import time

class TaskQueue(Queue.Queue):

def __init__(self, num_workers=1):
Queue.Queue.__init__(self)
self.num_workers = num_workers
self.start_workers()

def add_task(self, task, *args, **kwargs):
args = args or ()
kwargs = kwargs or {}
self.put((task, args, kwargs))

def start_workers(self):
for i in range(self.num_workers):
t = Thread(target=self.worker)
t.daemon = True
t.start()

def worker(self):
while True:
tupl = self.get()
item, args, kwargs = self.get()
item(*args, **kwargs)
self.task_done()

def tests():
def blokkah(*args, **kwargs):
time.sleep(5)
print "Blokkah mofo!"

q = TaskQueue(num_workers=5)

for item in range(10):
q.add_task(blokkah)

q.join() # block until all tasks are done
print "All done!"

if __name__ == "__main__":
tests()

相关文章

  • 使用pyqt5搭建yolo3目标识别界面的方法

    使用pyqt5搭建yolo3目标识别界面的方法

    这篇文章主要介绍了使用pyqt5搭建yolo3目标识别界面的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • python语言使用技巧分享

    python语言使用技巧分享

    下面小编就为大家带来一篇python语言使用技巧分享。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2016-05-05
  • python3使用pandas获取股票数据的方法

    python3使用pandas获取股票数据的方法

    今天小编就为大家分享一篇python3使用pandas获取股票数据的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • 浅谈Python中的bs4基础

    浅谈Python中的bs4基础

    今天小编就为大家分享一篇关于Python中的bs4基础,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2018-10-10
  • Windows自动化Python pyautogui RPA操作实现

    Windows自动化Python pyautogui RPA操作实现

    本文详细介绍了使用Python的pyautogui库进行Windows自动化操作的实现方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2025-01-01
  • 使用Python对SQLite数据库操作

    使用Python对SQLite数据库操作

    本文主要介绍了Python对SQLite数据库操作的简单教程。SQLite是一种嵌入式数据库,它的数据库就是一个文件。由于SQLite本身是C写的,而且体积很小,所以,经常被集成到各种应用程序中,甚至在IOS和Android的APP中都可以集成。
    2017-04-04
  • Python正则表达式使用范例分享

    Python正则表达式使用范例分享

    本文给大家总结了7个常用的Python正则表达式的使用范例以及简单解释分析,有需要的小伙伴可以参考下
    2016-12-12
  • CPython 垃圾收集器检测循环引用详解

    CPython 垃圾收集器检测循环引用详解

    这篇文章主要为大家介绍了CPython 垃圾收集器检测循环引用详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-10-10
  • 利用python调用摄像头的实例分析

    利用python调用摄像头的实例分析

    在本篇文章里小编给大家整理了一篇关于利用python调用摄像头的实例分析内容,有需要的朋友们跟着参考下。
    2021-06-06
  • PHP统计代码行数的小代码

    PHP统计代码行数的小代码

    这篇文章主要为大家详细介绍了PHP统计代码行数的小代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-09-09

最新评论