Golang Fasthttp选择使用slice而非map 存储请求数据原理探索

 更新时间:2024年02月01日 15:04:02   作者:波罗学 码途漫漫  
本文将从简单到复杂,逐步剖析为什么 Fasthttp 选择使用 slice 而非 map,并通过代码示例解释这一选择背后高性能的原因,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

引言

Fasthttp 是一个高性能的 Golang HTTP 框架,它在设计上做了许多优化以提高性能。其中一个显著的设计选择是使用 slice 而非 map 来存储数据,尤其是在处理 HTTP headers 时。

为什么呢?

本文将从简单到复杂,逐步剖析为什么 Fasthttp 选择使用 slice 而非 map,并通过代码示例解释这一选择背后高性能的原因

Slice vs Map:基本概念

首先,这个设计选择背后有着深思熟虑的考量,主要围绕性能优化展开。在深入探讨之前,我们需要理解 slice 和 map 在 Go 语言中的基本概念和性能特点。

  • • Slice:Slice 是对数组的封装,它提供了一个动态大小的、灵活的视图。Slices 的底层实际上是数组,这意味着它们的元素在内存中是连续存储的。

  • • Map:Map 是一种无序的键值对的集合,它通过哈希表实现。Map 提供了快速的查找、添加和删除操作,但这些操作的性能并不总是稳定。

内存分配和性能

在高性能的应用场景中,内存分配和回收是性能的关键因素之一。Fasthttp 在这方面做了考量。

Slice 的内存效率

由于 slice 的元素在内存中是连续存储的,它们访问速度快,且能有效利用 CPU 缓存。此外,slice 可以通过重新切片来复用已有的数组,减少内存分配和垃圾回收的压力。

Map 的内存开销

相比之下,map 的内存开销较大。

在 map 中,键和值通常是散布在内存中的,这导致 CPU 缓存利用率不高。而且,map 的增长通常涉及重新哈希和重新分配内存,这些操作在性能敏感的应用中可能成为瓶颈。

Fasthttp 中的 SliceMap

Fasthttp 选择使用自定义的 sliceMap 结构来存储键值对,而非标准的 map。

下面是 sliceMap 的一个简化实现和它的 Add 方法:

type kv struct {
    key []byte
    value []byte
}
type sliceMap []kv
func (sm *sliceMap) Add(k, v []byte) {
    kvs := *sm
    if cap(kvs) > len(kvs) {
        kvs = kvs[:len(kvs)+1]
    } else {
        kvs = append(kvs, kv{})
    }
    kv := &kvs[len(kvs)-1]
    kv.key = append(kv.key[:0], k...)
    kv.value = append(kv.value[:0], v...)
    *sm = kvs
}

在这个设计中,sliceMap 通过以下方式优化性能:

减少内存分配

通过在现有的 slice 上进行操作,sliceMap 尽可能地复用内存。当容量足够时,它通过重新切片 kvs = kvs[:len(kvs)+1] 来扩展 slice,避免了额外的内存分配。

减少垃圾回收压力

由于 slice 的元素是连续存储的,它可以更有效地被垃圾回收器处理,减少了垃圾回收的开销。而且,由于内存是复用的,垃圾回收的次数也大大减少。

性能优化的深层原因

Fasthttp 使用 sliceMap 而非 map 的决策不仅仅是基于内存和性能的考量,还有更深层的原因:

存储数据特性

在处理 HTTP 请求时,通常 headers、query 参数或 cookies 的数量并不多。这意味着即使使用线性搜索,查找效率也不会成为性能瓶颈。

相比之下,虽然 hash map 提供了理论上接近 O(1) 的查找效率,但实际使用中也有其开销和复杂性。

  • • 首先,hash map 的哈希计算本身就需要时间。

  • • 其次,哈希碰撞时,hash map 要额外处理来解决碰撞,这可能涉及到链表遍历或重新哈希等操作。

这些因素在元素数量较少时可能会抵消 hash map 在查找效率上的理论优势,而 slice 则才是更优质的选择。

CPU 预加载特性

由于 slice 的内存布局是连续的,它符合 CPU 缓存的工作原理,即一次性加载相邻数据。这种连续性使得 CPU 在访问一个 slice 元素后,能预加载相邻元素到缓存中,提高后续访问的速度。

因此,顺序访问 slice 时,缓存命中率高,减少了对主内存的访问次数,从而提高了性能。

结论

Fasthttp 的设计选择反映了对性能细节的深入理解和精心优化。通过使用 slice 而非 map,Fasthttp 在内存分配、垃圾回收以及 CPU 缓存利用等方面实现了优化,为高性能的 HTTP 应用提供了坚实的基础。这种设计不仅仅是技术上的选择,更是对实际应用场景和性能需求的深入洞察。

以上就是Golang Fasthttp选择使用slice而非map 存储请求数据原理探索的详细内容,更多关于Golang Fasthttp slice存储数据的资料请关注脚本之家其它相关文章!

相关文章

  • Golang实现AES加密和解密的示例代码

    Golang实现AES加密和解密的示例代码

    AES( advanced encryption standard)使用相同密钥进行加密和解密,也就是对称加密。本文将详细讲解Golang实现AES加密和解密的方法,感兴趣的可以学习一下
    2022-05-05
  • 详解Go channel管道的运行原理

    详解Go channel管道的运行原理

    Go推荐通过通信来共享内存,而channel就实现了这一理念。那channel是怎么运行的呢?本文将带你搞懂Go channel管道的运行原理,感兴趣的同学可以参考一下
    2023-05-05
  • golang 对私有函数进行单元测试的实例

    golang 对私有函数进行单元测试的实例

    这篇文章主要介绍了golang 对私有函数进行单元测试的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-05-05
  • golang sql连接池的实现方法详解

    golang sql连接池的实现方法详解

    database/sql是golang的标准库之一,它提供了一系列接口方法,用于访问关系数据库。下面这篇文章主要给大家介绍了关于golang sql连接池用法的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考借鉴,下面来一起看看吧
    2018-09-09
  • golang RPC包原理和使用详细介绍

    golang RPC包原理和使用详细介绍

    golang的rpc支持三个级别的RPC:TCP、HTTP、JSONRPC。但Go的RPC包是独一无二的RPC,它和传统的RPC系统不同,它只支持Go开发的服务器与客户端之间的交互,因为在内部,它们采用了Gob来编码
    2022-09-09
  • golang 熔断器的实现过程

    golang 熔断器的实现过程

    这篇文章主要介绍了golang 熔断器的实现过程,Go 项目中使用熔断技术提高系统容错性。接下俩就来给打家介绍 go 熔断器和其使用,需要的朋友可以参考一下
    2022-01-01
  • golang防止内存逃逸的方法小结

    golang防止内存逃逸的方法小结

    在Go语言中,内存逃逸是指在函数中分配的变量在函数结束后仍然被引用,防止内存逃逸有助于提高程序的性能,因为栈上分配的内存可以更快地被回收,本文给大家总结了一些防止内存逃逸的方法,需要的朋友可以参考下
    2024-02-02
  • 深入探讨Go语言中的预防性接口为什么是不必要的

    深入探讨Go语言中的预防性接口为什么是不必要的

    在Go语言中,有一种从其他语言带来的常见模式:预防性接口,虽然这种模式在 Java 等语言中很有价值,但在Go中往往会成为反模式,本文我们就来深入探讨一下原因
    2025-01-01
  • Go语言进行多时区时间转换的示例代码

    Go语言进行多时区时间转换的示例代码

    本文介绍了使用Go语言进行多时区时间转换,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2024-12-12
  • 深入了解Golang为什么需要超时控制

    深入了解Golang为什么需要超时控制

    本文将介绍为什么需要超时控制,然后详细介绍Go语言中实现超时控制的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起了解一下
    2023-05-05

最新评论