图文详解Go程序如何编译并运行起来的

 更新时间:2024年05月30日 11:00:36   作者:RdrB1te  
Go语言这两年在语言排行榜上的上升势头非常猛,Go语言虽然是静态编译型语言,但是它却拥有脚本化的语法,下面这篇文章主要给大家介绍了关于Go程序如何编译并运行起来的相关资料,需要的朋友可以参考下

Go程序是如何编译的

从hello RdrB1te开始

package main  
  
import "fmt"  
  
func main() {  
   fmt.Println("hello RdrB1te")  
}

不实际编译它,只输出它的编译过程:

go build -n

简单的编译过程分析:

上面的过程确认了两个事情:

  • Runtime会永远随着用户代码一起编译
  • 在windows平台上编译出来了一个exe的可执行文件

Go 编译过程

词法分析

  • 将源代码翻译成Token
  • Token是代码中的最小语义结构(如变量名、关键字、运算符等不可拆分的最小单元)

句法分析

  • Token序列经过处理,变成语法树

语义分析

  • 类型检查
  • 类型推断
  • 查看类型是否匹配
  • 函数调用内联
  • 逃逸分析

中间码生成:

  • 为了处理不同平台的差异,先生成中间代码(SSA)

查看从代码到中间码(SSA)生成的整个过程

$env:GOSSAFUNC="main" # windows powershell
export GOSSAFUNC=main # linux
go build

会看到如下输出:

用浏览器打开ssa.html文件:

sources就是你的源代码,AST就是生成的语法树,genssa就是生成的与平台无关的中间码SSA,当然中间还有很多的其它步骤,这里不再列举,可以点击展开查看

机器码生成:

  • 先生成Plan9汇编代码(与平台相关)
  • 最后编译为机器码
  • 输出的机器码为.a文件

查看Plan9汇编代码

go build -gcflags -S main.go

链接:

  • 将各个包进行链接,包括runtime,最终生成可执行文件

Go程序是如何运行起来的

Go程序的入口?

是下面的main方法吗?当然不是

func main() {  
   fmt.Println("hello RdrB1te")  
}

是runtime包下面的rt0_xxx.s文件,下面以Linux x86芯片架构上面运行的rt0_linux-amd64.s举例:

TEXT _rt0_amd64_linux(SB),NOSPLIT,$-8
	JMP	_rt0_amd64(SB)

只要用了x86芯片架构都要进入到_rt0_amd64这个方法中去,这个方法调到了哪里呢,选中双击shift,打开在文件中查找:找到下面这行

asm_amd64.s这个文件中的这段代码:

TEXT _rt0_amd64(SB),NOSPLIT,$-8  
   MOVQ   0(SP), DI  // argc  
   LEAQ   8(SP), SI  // argv  
   JMP    runtime·rt0_go(SB)

意思是读取命令行参数,复制参数数量argc和参数值argv到栈上,然后调用了runtime·rt0_go这个方法,这方法的位置就在这个文件的下面:

TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0  
   // copy arguments forward on an even stack  
   MOVQ   DI, AX    // argc  
   MOVQ   SI, BX    // argv  
   SUBQ   $(5*8), SP    // 3args 2auto  
   ANDQ   $~15, SP  
   MOVQ   AX, 24(SP)  
   MOVQ   BX, 32(SP)  
  
   // create istack out of the given (operating system) stack.  
   // _cgo_init may update stackguard.   MOVQ   $runtime·g0(SB), DI

上面这段的意思时初始化g0执行栈,g0是为了调度协程而产生的协程,g0是每个Go程序的第一个协程。继续往下面看,找到下面这段:

	CALL	runtime·check(SB)

这行是第一次调用的go语言方法,要找到这个方法可以选中双击shift,找到下面这行:

进入:

func check(){

}

check方法主要是做运行时检测:

  • 检查各种类型的长度
  • 检查指针操作
  • 检查结构体字段的偏移量
  • 检查atomic原子操作
  • 检查CAS操作
  • 检查栈大小是否是2的幂次

继续往下看,可以通过Ctrl+Alt+左右箭头进行快速跳转回退或前进,退到这个位置:

CALL    runtime·check(SB)  
  
MOVL   24(SP), AX    // copy argc  
MOVL   AX, 0(SP)  
MOVQ   32(SP), AX    // copy argv  
MOVQ   AX, 8(SP)  
CALL   runtime·args(SB)  
CALL   runtime·osinit(SB)  
CALL   runtime·schedinit(SB)  
  
// create a new goroutine to start program  
MOVQ   $runtime·mainPC(SB), AX       // entry  
PUSHQ  AX  
CALL   runtime·newproc(SB)  
POPQ   AX

runtime·args(SB):参数初始化runtime.args,对命令行中的参数进行处理,参数数量赋值给argc int32,参数值复制给argv **byteruntime·osinit:判断操作系统,执行相应的初始化组件,供调度器初始化所用
runtime·schedinit: 初始化Go调度器。初始化调度器会做哪些事情:

  • 全局栈空间内存分配
  • 加载命令行参数到 os.Args
  • 堆内存空间的初始化
  • 加载操作系统环境变量
  • 初始化当前系统线程
  • 垃圾回收器的参数初始化
  • 算法初始化(map、hash)
  • 设置 process 数量

继续往下看:

    // create a new goroutine to start program  
   MOVQ   $runtime·mainPC(SB), AX       // entry  
   PUSHQ  AX  
   CALL   runtime·newproc(SB)  
   POPQ   AX  
  
   // start this M  
   CALL   runtime·mstart(SB)  
  
   CALL   runtime·abort(SB)  // mstart should never return  
   RET  
  
// mainPC is a function value for runtime.main, to be passed to newproc.  
// The reference to runtime.main is made via ABIInternal, since the  
// actual function (not the ABI0 wrapper) is needed by newproc.  
DATA   runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB)

MOVQ $runtime·mainPC(SB):取mainPC的地址,这个mainPC的地址就是runtime·main这个方法的地址
CALL runtime·newproc:创建一个新的协程(主协程),执行runtime·main这个方法(主函数),放入调度器等待调度
CALL runtime·mstart(SB):初始化一个M,用来调度主协程,主协程开始执行主函数。

看下runtime·main这个方法里面干了什么,选中双击shift,找到下面这行:

进入:

// The main goroutine.
func main() {  
   doInit(&runtime_inittask) // 执行runtime包中的init方法
   gcenable() // 启动GC垃圾回收器
   doInit(&main_inittask) //执行用户包依赖的init方法
   fn := main_main // 执行用户主函数main.mian() 
   fn()
}

按住ctrl进入main_main:

//go:linkname main_main main.main
func main_main()

主协程执行主函数:

  • 执行runtime包中的init方法
  • 启动GC垃圾回收器
  • 执行用户包依赖的init方法
  • 执行用户主函数main.mian()

总结

  • Go启动时经历了检查、各种初始化、初始化协程调度的过程
  • main.main()也是在协程中运行的

到此这篇关于Go程序如何编译并运行起来的文章就介绍到这了,更多相关Go编译运行内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • goland 设置project gopath的操作

    goland 设置project gopath的操作

    这篇文章主要介绍了goland 设置project gopath的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-05-05
  • docker如何安装部署golang应用程序

    docker如何安装部署golang应用程序

    这篇文章主要为大家介绍了docker如何安装部署golang应用程序详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-11-11
  • go语言中的template使用示例详解

    go语言中的template使用示例详解

    在Go语言中,可以通过text/template和html/template包来处理模板,本文提供了一个使用Go模板的基本示例,包括导入包、创建数据结构、定义模板、执行模板及运行程序,通过这些步骤,可以输出一个格式化的YAML配置
    2024-10-10
  • Go语言中strings.HasPrefix、strings.Split、strings.SplitN() 函数

    Go语言中strings.HasPrefix、strings.Split、strings.SplitN() 函数

    本文主要介绍了Go语言中strings.HasPrefix、strings.Split、strings.SplitN()函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2024-08-08
  • GoLang中panic与recover函数以及defer语句超详细讲解

    GoLang中panic与recover函数以及defer语句超详细讲解

    这篇文章主要介绍了GoLang的panic、recover函数,以及defer语句,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧
    2023-01-01
  • golang 生成二维码海报的实现代码

    golang 生成二维码海报的实现代码

    这篇文章主要介绍了golang 生成二维码海报的实现代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-02-02
  • GoLang channel底层代码实现详解

    GoLang channel底层代码实现详解

    Channel和goroutine的结合是Go并发编程的大杀器。而Channel的实际应用也经常让人眼前一亮,通过与select,cancel,timer等结合,它能实现各种各样的功能。接下来,我们就要梳理一下GoLang channel底层代码实现
    2022-10-10
  • golang中encoding/json包的实现

    golang中encoding/json包的实现

    Go语言通过encoding/json包提供了对JSON数据的强大支持,本文主要介绍了golang中encoding/json包的实现,具有一定的参考价值,感兴趣的可以了解一下
    2025-07-07
  • 解决go获取文件md5值不正确的问题

    解决go获取文件md5值不正确的问题

    本文主要介绍了解决go获取文件md5值不正确的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2024-01-01
  • 从源码深入理解golang RWMutex读写锁操作

    从源码深入理解golang RWMutex读写锁操作

    这篇文章主要介绍了从源码深入理解golang RWMutex读写锁操作,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-05-05

最新评论