理解Python数据离散化手写if-elif语句与pandas中cut()方法实现

 更新时间:2023年05月18日 09:42:46   作者:奕泽  
这篇文章主要介绍了通过手写if-elif语句与pandas中cut()方法实现示例理解Python数据离散化详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

正文

当我们进行数据分析时,有时候需要对数值型数据进行离散化,将其划分为不同的标签或类别。这样做可以方便我们进行统计和分析,并帮助我们更好地理解数据。

在本文中,我们将介绍两种常见的离散化方法,并提供实现代码。

方法一:使用条件语句

第一种方法是使用条件语句来显式地检查输入值 x 是否在每个区间内,并返回相应的标签。这种方法适用于自定义的分段方式,要求手动设置每个阈值和对应的标签。

下面是一个示例函数 transfor_num 的实现代码:

def transfor_num(x):
    if x ==0:
        label = '无交易'
    elif 0 < x <=0.01:
        label = '0-0.01'
    elif 0.01 < x <=0.04:
        label = '0.01-0.04'
    elif 0.04 < x <=0.09:
        label = '0.04-0.09'
    elif 0.09 < x <=0.49:
        label = '0.09-0.49'  
    elif 0.49 < x <=0.99:
        label = '0.49-0.99'
    elif 0.99 < x <=4.99:
        label = '0.99-4.99'    
    elif 4.99 < x <=9.99:
        label = '4.99-9.99'
    elif 9.99 < x <=19.99:
        label = '9.99-19.99'
    elif 19.99 < x <=49.99:
        label = '19.99-49.99'
    elif 49.99 < x <=99.99:
        label = '49.99-99.99'
    elif x > 99.99 :
        label = '100及以上'
    return label
# 你可以通过调用 transfor_num(x) 函数并将所需的值传递给 x 参数来使用该函数。例如:
label = transfor_num(5.67)
print(label)

输出结果应该是 '0.01-0.04',因为 5.67 在指定的区间范围内。

方法二:使用 pd.cut() 方法

第二种方法是使用 pandas 库的 cut() 方法将输入值 x 映射到不同的标签中,并返回标签。这种方法更加简洁和易于使用,同时也可以通过调整 bins 参数来灵活地控制分段的方式和结果。

下面是一个示例函数 transfor_num1 的实现代码:

def transfor_num1(x):
    bins = [-1,0, 0.01, 0.04, 0.09, 0.49, 0.99, 4.99, 9.99, 19.99, 49.99, 99.99, float('inf')]
    labels = [ '无交易','0-0.01', '0.01-0.04', '0.04-0.09', '0.09-0.49', '0.49-0.99', '0.99-4.99', '4.99-9.99', '9.99-19.99', '19.99-49.99', '49.99-99.99', '100及以上']
    return pd.cut(x, bins=bins, labels=labels)

你可以通过调用 transfor_num1(x) 函数并将所需的值传递给 x 参数来使用该函数。例如:

import pandas as pd

data = {'transaction': [0, 0.005, 0.0125, 0.044, 0.067, 0.55, 2.99, 8.75, 15.6, 30.25, 80.5, 150]}
df = pd.DataFrame(data)

df['tran_amount_label'] = transfor_num1(df['transaction'])

print(df)

# 输出结果将会是如下数据框的形式:
    transaction  tran_amount_label
0       0.00000              无交易
1       0.00500            0-0.01
2       0.01250        0.01-0.04
3       0.04400        0.01-0.04
4       0.06700        0.04-0.09
5       0.55000        0.49-0.99
6       2.99000        0.99-4.99
7       8.75000        4.99-9.99
8      15.60000      9.99-19.99
9      30.25000     19.99-49.99
10     80.50000    49.99-99.99
11    150.00000           100及以上

其中 tran_amount_label 是新添加的一列,它显示了每个交易额所属的标签和类别。

两种方法各有优缺点。使用条件语句需要手动设置阈值和对应的标签,比较繁琐;而使用 pd.cut() 方法则可以自动划分区间,但其不太灵活。因此,在具体使用时,需要根据实际情况进行选择。

希望本文能够帮助你更好地理解离散化的概念和实现方法,更多关于Python数据离散化的资料请关注脚本之家其它相关文章!

相关文章

  • Python存储json数据发生乱码的解决方法

    Python存储json数据发生乱码的解决方法

    当使用json.dump()把python对象转换为json后存储到文件中时,文件可能会出现乱码的问题,本篇文章可以帮助您解决乱码问题,文中通过图文介绍的非常详细,需要的朋友可以参考下
    2023-09-09
  • 记一次python 内存泄漏问题及解决过程

    记一次python 内存泄漏问题及解决过程

    最近工作中慢慢开始用python协程相关的东西,所以用到了一些相关模块,如aiohttp, aiomysql, aioredis等,用的过程中也碰到的很多问题,这里整理了一次内存泄漏的问题。分享到脚本之家平台,需要的朋友参考下
    2018-11-11
  • 代码分析Python地图坐标转换

    代码分析Python地图坐标转换

    这篇文章主要介绍了Python地图坐标转换的相关知识点以及分享了相关的代码实例,对此有兴趣的朋友学习下。
    2018-02-02
  • Python xpath,JsonPath,bs4的基本使用

    Python xpath,JsonPath,bs4的基本使用

    这篇文章主要介绍了Python xpath,JsonPath,bs4的基本使用,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感兴趣的小伙伴可以参考一下
    2022-07-07
  • Django前后端分离csrf token获取方式

    Django前后端分离csrf token获取方式

    这篇文章主要介绍了Django前后端分离csrf token获取方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-12-12
  • Pandas数据类型自行变换及数据类型转换失败问题分析与解决

    Pandas数据类型自行变换及数据类型转换失败问题分析与解决

    这篇文章主要介绍了Pandas数据类型自行变换及数据类型转换失败问题分析与解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-06-06
  • Python实现各种邮件发送

    Python实现各种邮件发送

    这篇文章主要介绍了Python实现各种邮件发送,Python内置对SMTP的支持,可以发送纯文本邮件、HTML邮件以及带附件的邮件,下文详细实现过程需要的小伙伴可以参考一下
    2022-05-05
  • python 读取dicom文件,生成info.txt和raw文件的方法

    python 读取dicom文件,生成info.txt和raw文件的方法

    今天小编就为大家分享一篇python 读取dicom文件,生成info.txt和raw文件的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • 跟老齐学Python之有容乃大的list(3)

    跟老齐学Python之有容乃大的list(3)

    现在是讲lis的第三章了。俗话说,事不过三,不知道在开头,我也不知道这一讲是不是能够把基础的list知识讲完呢。哈哈。其实如果真正写文章,会在写完之后把这句话删掉的。而我则是完全像跟看官聊天一样,就不删除了。
    2014-09-09
  • Python3.10新特性之match语句示例详解

    Python3.10新特性之match语句示例详解

    这篇文章主要为大家介绍了Python3.10新特性之match语句示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-02-02

最新评论