利用python绘制带有时间线的柱状图

 更新时间:2023年07月31日 11:47:02   作者:不能再留遗憾了  
这篇文章主要为大家详细介绍了如何使用python绘制出带有时间线的柱状图,文中的示例代码讲解的非常详细,具有一定的学习与借鉴价值,需要的可以参考一下

如何绘制柱状图

绘制柱状图跟绘制折线图的步骤是大致相同的。

python 中绘制柱状图依赖于 pyecharts.charts 模块下的 Bar 方法。

from pyecharts.charts import Bar
bar = Bar()
x_data = ["英国","美国","中国"]
y_data = [10,20,30]
bar.add_xaxis(x_data)
bar.add_yaxis("GDP",y_data)
bar.render("柱状图.html")

我们还可以将横坐标与纵坐标颠倒一下,来使数据的展示更加的形象。

使用 bar.reversal_axis() 反转x轴和y轴。

这里数据显示在柱状图中,我们看的不是很方便,我也也可以通过设置系列配置选项来使数据显示在柱状图的右侧。

bar.add_yaxis("GDP",y_data,label_opts=LabelOpts(position="right"))

所以我们经过完善后的整体代码是:

from pyecharts.charts import Bar
from pyecharts.options import LabelOpts
bar = Bar()
x_data = ["英国","美国","中国"]
y_data = [10,20,30]
bar.add_xaxis(x_data)
bar.add_yaxis("GDP",y_data,label_opts=LabelOpts(position="right"))
bar.reversal_axis()  # 反转x轴和y轴
bar.render("柱状图.html")

添加时间线

通过添加时间线我们可以看到多种不同的数据,每一个时间其实就是一个柱状图,时间线是由一个一个的柱状图组成的。

from pyecharts.charts import Bar,Timeline
from pyecharts.options import LabelOpts,TitleOpts
bar1 = Bar()
bar2 = Bar()
bar3 = Bar()
x_data = ["英国","美国","中国"]
y_data1 = [10,20,30]
y_data2 = [20,30,40]
y_data3 = [40,50,70]
bar1.add_xaxis(x_data)
bar1.add_yaxis("GDP",y_data1,label_opts=LabelOpts(position="right"))
bar1.reversal_axis()  # 反转x轴和y轴
bar1.set_global_opts(title_opts=TitleOpts(title="2021年GDP"))
bar2.add_xaxis(x_data)
bar2.add_yaxis("GDP",y_data2,label_opts=LabelOpts(position="right"))
bar2.reversal_axis()  # 反转x轴和y轴
bar2.set_global_opts(title_opts=TitleOpts(title="2022年GDP"))
bar3.add_xaxis(x_data)
bar3.add_yaxis("GDP",y_data3,label_opts=LabelOpts(position="right"))
bar3.reversal_axis()  # 反转x轴和y轴
bar3.set_global_opts(title_opts=TitleOpts(title="2023年GDP"))
timeline = Timeline()
timeline.add(bar1,"2021")
timeline.add(bar2,"2022")
timeline.add(bar3,"2023")
timeline.render("2021-2023中美英三国GDP.html")

如果我们要让动态柱状图动起来的话,我们需要设置配置选项。

timeline.add_schema(
    play_interval=1000,  # 每个柱状图播放间隔时间,单位(毫秒)
    is_timeline_show=True,  # 是否显示时间线,默认显示
    is_auto_play=True,  # 是否自动播放
    is_loop_play=True  # 是否循环播放
)

根据提供的数据绘制动态柱状图

我们显示出1960年-2014年全国GDP数据前八的国家和数据。

这里提供的数据比较简单,我们只需要将第一行无用的数据删除,然后再将这些数据转换为我们绘制柱状图需要的数据就好了。

读取并删除无用数据

f = open("D:/桌面/1960-2019全球GDP数据.csv","r",encoding="GB2312")
data_lines = f.readlines()
f.close()
data_lines.pop(0)

GB2312 编码是中文编码格式

将数据转换为字典

data_dict = {}
for line in data_lines:
    data_list = line.split(",")  # 每一行以逗号分割,返回一个列表
    year = data_list[0]
    country = data_list[1]
    GDP = float(data_list[2][:-1])  # 每一行最后有一个换行符
    # 这里需要做出异常判断,因为当我们第一次插入数据的时候并没有容器来装这些数据
    try:
        data_dict[year].append((country, GDP))
    except:
        data_dict[year] = []
        data_dict[year].append([country, GDP])

创建柱状图并添加到时间线中

sorted_year_line = sorted(data_dict.keys())  # 按时间顺序排序
timeline = Timeline({"scheme":ThemeType.LIGHT})  # 在创建时间线的时候传入scheme参数可以设置时间线的主题,也就是柱状图的颜色
for year in sorted_year_line:
    x_data = []
    y_data = []
    data_dict[year].sort(key=lambda element : element[1],reverse=True)
    year_data = data_dict[year][0:8]  # 取GDP前八的数据
    for data in year_data:
        x_data.append(data[0])
        y_data.append(data[1] / 100000000)
    bar = Bar()
    x_data.reverse()
    y_data.reverse()  # 让GDP排名第一的数据在最上面,所以我们将x_data 和 y_data中的数据反转一下
    bar.add_xaxis(x_data)
    bar.add_yaxis("GDP(亿)",y_data,label_opts=LabelOpts(position="right"))
    bar.reversal_axis()  # 将x轴和y轴翻转
    bar.set_global_opts(
        title_opts=TitleOpts(title=f"{year}年全国GDP数据前八")
    )
    timeline.add(bar,year)

配置选项并生成带有数据的折线图

timeline.add_schema(
    play_interval=1000,
    is_timeline_show=True,
    is_auto_play=True,
    is_loop_play=False
)
timeline.render("1960-2014年全国GDP数据前八.html")

到此这篇关于利用python绘制带有时间线的柱状图的文章就介绍到这了,更多相关python时间线柱状图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 教你利用python如何读取txt中的数据

    教你利用python如何读取txt中的数据

    们使用python的时候经常需要读取txt文件中的内容,下面这篇文章主要给大家介绍了关于利用python如何读取txt中数据的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-03-03
  • Python遍历numpy数组的实例

    Python遍历numpy数组的实例

    下面小编就为大家分享一篇Python遍历numpy数组的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • Django实现发送邮件功能

    Django实现发送邮件功能

    这篇文章主要介绍了Django实现发送邮件功能,本文图文并茂给大家介绍的非常详细,具有一定的参考借鉴价值 ,需要的朋友可以参考下
    2019-07-07
  • pytest fixtures装饰器的使用和如何控制用例的执行顺序

    pytest fixtures装饰器的使用和如何控制用例的执行顺序

    这篇文章主要介绍了pytest fixtures装饰器的使用和如何控制用例的执行顺序,帮助大家更好的理解和使用pytest测试框架,感兴趣的朋友可以了解下
    2021-01-01
  • Python logging日志模块的概念与实践讲解

    Python logging日志模块的概念与实践讲解

    本文通过具体的代码示例为大家解释了如何高效地使用logging模块进行日志记录,以及如何避免常见的陷阱,希望可以帮助大家更好地掌握这个强大的工具
    2023-07-07
  • Python爬虫获取基金基本信息

    Python爬虫获取基金基本信息

    这篇文章主要介绍了Python爬虫获取基金基本信息,文章基于上一篇文章内容基于python的相关资料展开主题,需要的小伙伴可以参考一下
    2022-05-05
  • 详解python的webrtc库实现语音端点检测

    详解python的webrtc库实现语音端点检测

    这篇文章主要介绍了详解python的webrtc库实现语音端点检测,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-05-05
  • Python 支付整合开发包的实现

    Python 支付整合开发包的实现

    这篇文章主要介绍了Python 支付整合开发包的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-01-01
  • 科学Python开发环境Spyder必知必会点

    科学Python开发环境Spyder必知必会点

    这篇文章主要为大家介绍了科学Python开发环境Spyder必知必会点及使用详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-01-01
  • Pycharm使用CV2的详细图文教程

    Pycharm使用CV2的详细图文教程

    在Windows操作系统下安装Python3和OpenCV库后,通过安装并配置PyCharm开发环境,可以直接显示并调用已安装的包,例如使用cv2库的接口进行编程和项目开发,文中通过图文介绍的非常详细,需要的朋友可以参考下
    2024-10-10

最新评论