使用python框架Scrapy爬取数据的操作步骤

 更新时间:2023年10月26日 09:21:01   作者:c_and_v  
Scrapy是一个基于Python的强大的开源网络爬虫框架,用于从网站上抓取信息,它提供了广泛的功能,使得爬取和分析数据变得相对容易,本文小编将给给大家介绍一下如何使用python框架Scrapy爬取数据,需要的朋友可以参考下

什么是Scrapy?

Scrapy是一个基于Python的强大的开源网络爬虫框架,用于从网站上抓取信息。它提供了广泛的功能,使得爬取和分析数据变得相对容易。Scrapy的特点包括:

  • 强大的数据提取工具,支持XPath和CSS选择器。
  • 简化的HTTP请求和响应处理。
  • 可配置的下载中间件,用于处理不同类型的请求。
  • 数据存储支持,包括JSON、CSV、XML等。
  • 并发请求管理,提高效率。

创建Scrapy项目

要使用Scrapy来爬取网站,首先需要创建一个Scrapy项目。下面是创建一个名为douban_top250的Scrapy项目的步骤:

  • 打开终端,导航到您想要创建项目的目录,并运行以下命令:
scrapy startproject douban_top250
  • 进入项目目录:
cd douban_top250
  • 创建一个用于爬取电影信息的Spider:
scrapy genspider douban_movie douban.com

现在,项目的基本结构已经创建,包括爬虫(Spider)模板文件。

编写Scrapy Spider

Spider是Scrapy项目中负责定义如何抓取信息的部分。需要编辑Spider文件,以指定要爬取的URL、如何处理响应和如何提取数据。

以下是一个示例Spider代码:

import scrapy
from douban_top250.items import DoubanTop250Item

class DoubanMovieSpider(scrapy.Spider):
    name = 'douban_movie'  # Spider的名称
    allowed_domains = ['douban.com']  # 允许爬取的域名
    start_urls = ['https://movie.douban.com/top250']  # 起始URL

    def parse(self, response):
        for movie in response.css('ol.grid_view li'):
            item = DoubanTop250Item()  # 创建一个DoubanTop250Item对象用于存储数据
            item['rank'] = movie.css('em::text').get()  # 提取电影排名
            item['title'] = movie.css('.title::text').get()  # 提取电影标题
            item['rating'] = movie.css('.rating_num::text').get()  # 提取电影评分
            item['link'] = movie.css('a::attr(href)').get()  # 提取电影链接
            yield item  # 返回Item以供后续处理

        next_page = response.css('.next a::attr(href)').get()  # 提取下一页的链接
        if next_page is not None:
            yield response.follow(next_page, self.parse)  # 继续爬取下一页

在这个Spider中,指定了Spider的名称(name)、允许的域名(allowed_domains)、起始URL(start_urls)以及如何解析响应的方法(parse)。使用CSS选择器来提取排名、标题、评分和链接等信息,并将它们保存到一个自定义的Item类中。

创建Item类

在Scrapy中,Item是用来定义要提取的数据结构的类。在的项目中,创建了一个DoubanTop250Item类,用于定义电影信息的数据结构。以下是Item类的代码:

import scrapy

class DoubanTop250Item(scrapy.Item):
    rank = scrapy.Field()
    title = scrapy.Field()
    rating = scrapy.Field()
    link = scrapy.Field()

在这个类中,定义了四个字段:排名(rank)、标题(title)、评分(rating)和链接(link)。这些字段将用于存储从网页上提取的数据。

配置数据存储

Scrapy允许您配置不同的数据存储选项,包括JSON、CSV、XML等格式。我选择将数据保存为JSON文件。

在项目的设置中,配置了FEEDS设置,以指定JSON文件的保存位置和格式:

FEEDS = {
    'douban_top250.json': {
        'format': 'json',
        'encoding': 'utf-8',
    },
}

这将数据以JSON格式保存到名为douban_top250.json的文件中。

运行Scrapy爬虫

一旦编写好Spider和Item类,并配置好数据存储选项,就可以运行Scrapy爬虫来抓取豆瓣Top 250电影数据了。运行以下命令:

scrapy crawl douban_movie

Scrapy将开始访问豆瓣电影网站的页面,抓取数据并保存为JSON文件。

拿到的数据如图:

处理常见问题

在爬取网站数据时,可能会遇到各种常见问题,如请求限制、页面解析问题和网络连接问题。以下是一些处理这些问题的一般指导:

  • 请求限制:如果您遇到HTTP状态码403(禁止访问)或其他请求限制问题,可以尝试设置合适的User-Agent、使用IP代理、限制请求速度以及尊重网站的robots.txt规则。

    本次遇到的问题: DEBUG: Crawled (403) <GET https://movie.douban.com/top250> (referer: None)

    解决方案: User-Agent设置:尝试在Scrapy中设置一个常见的浏览器User-Agent,以使请求看起来更像是由浏览器发出的。这可以通过在Spider中添加USER_AGENT设置来完成,如下: USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'

  • 页面解析问题:在编写Spider时,确保您的选择器和规则正确。经常检查网站的HTML结构,以适应可能的更改。

  • 网络连接问题:网络连接问题可能会导致请求超时或失败。确保您

的网络连接稳定,使用合理的超时设置,以及适当处理连接异常。

结论

使用Scrapy爬取豆瓣Top 250电影数据是一个很好的示例,展示了如何创建一个功能强大的网络爬虫,用于从网站上抓取数据。在本文中,涵盖了创建Scrapy项目、编写Spider、数据提取、保存为JSON文件以及处理常见问题的方方面面。Scrapy为爬虫开发者提供了强大的工具,使得数据抓取变得更容易。

以上就是使用python框架Scrapy爬取数据的操作步骤的详细内容,更多关于python Scrapy爬取数据的资料请关注脚本之家其它相关文章!

相关文章

  • Python from import导包ModuleNotFoundError No module named找不到模块问题解决

    Python from import导包ModuleNotFoundError No module named

    最近在执行python脚本时,from import的模块没有被加载进来,找不到module,这篇文章主要给大家介绍了关于Python from import导包ModuleNotFoundError No module named找不到模块问题的解决办法,需要的朋友可以参考下
    2022-08-08
  • Python办公自动化PPT批量转换操作

    Python办公自动化PPT批量转换操作

    本文介绍如何使用 python 操作 PPT,用到的模块就是 python-pptx,以下的示例基本满足日常需求,如果要知道更多,可以访问 python-pptx 的官方文档
    2021-09-09
  • Python3实现获取图片文字里中文的方法分析

    Python3实现获取图片文字里中文的方法分析

    这篇文章主要介绍了Python3实现获取图片文字里中文的方法,结合实例形式分析了Python基于文字识别引擎tesseract-ocr针对图片里中文识别的相关操作技巧与操作注意事项,需要的朋友可以参考下
    2018-12-12
  • 浅谈Python中的模块

    浅谈Python中的模块

    这篇文章主要介绍了Python中的模块相关知识,文中代码非常详细,供大家参考和学习,感兴趣的朋友可以了解下
    2020-06-06
  • jupyter读取错误格式文件的解决方案

    jupyter读取错误格式文件的解决方案

    这篇文章主要介绍了jupyter读取错误格式文件的解决方案,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • 一个简单的python爬虫程序 爬取豆瓣热度Top100以内的电影信息

    一个简单的python爬虫程序 爬取豆瓣热度Top100以内的电影信息

    这篇文章主要为大家详细介绍了一个简单的python爬虫程序,爬取豆瓣热度Top100以内的电影信息,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-04-04
  • pandas如何快速去除列名中的特殊符号

    pandas如何快速去除列名中的特殊符号

    在使用Pandas处理数据时,经常需要处理数据中的列名column name,有时候,列名可能包含特殊字符,比如空格、点号、括号等,这些特殊字符可能会导致下一步的代码出错,因此需要将这些特殊字符从列名中删除,下面先介绍pandas如何去除列名中的特殊符号,感兴趣的朋友一起看看吧
    2024-01-01
  • 浅谈Python3中datetime不同时区转换介绍与踩坑

    浅谈Python3中datetime不同时区转换介绍与踩坑

    最近的项目需要根据用户所属时区制定一些特定策略,学习、应用了若干python3的时区转换相关知识,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-08-08
  • python复制文件的方法实例详解

    python复制文件的方法实例详解

    这篇文章主要介绍了python复制文件的方法,以实例形式较为详细的分析了Python文件复制的相关操作模块与使用技巧,需要的朋友可以参考下
    2015-05-05
  • Flask框架使用异常捕获问题

    Flask框架使用异常捕获问题

    这篇文章主要介绍了Flask框架使用异常捕获问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-12-12

最新评论