Python Pandas中的分组聚合操作详解

 更新时间:2023年11月16日 08:46:19   作者:悬崖上的金鱼  
Pandas是Python中用于数据分析的重要工具,提供了丰富的数据操作方法,本文将介绍 Pandas 中的数据分组方法以及不同的聚合操作,感兴趣的小伙伴可以学习一下

Pandas 是 Python 中用于数据分析的重要工具,它提供了丰富的数据操作方法。在数据分析过程中,经常需要对数据进行分组聚合操作。本文将介绍 Pandas 中的数据分组方法以及不同的聚合操作,并结合代码示例进行说明。

完整Excel数据

读取数据并进行简单分组

首先,我们通过 Pandas 读取 Excel 文件,并使用单个列进行分组,并应用聚合函数。示例代码如下:

df1 = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据1.xlsx')
df = df1.groupby('店铺名称', as_index=False).sum()
print(df)

多列分组及聚合函数应用

接着,我们演示了如何使用多个列进行分组,并应用聚合函数:

df2 = df1.groupby(['店铺名称','订单号'], as_index=False).sum()
print(df2)

自定义聚合函数的应用

在这个示例中,我们定义了一个自定义聚合函数 custom_agg,并将其应用在分组聚合操作中:

def custom_agg(x):
    return x.max() - x.min()

result = df1.groupby('店铺名称', as_index=False)['销售数量'].agg(custom_agg)
print(result)

同时应用多个聚合函数

我们还可以同时应用多个聚合函数,示例如下:

df3 = df1.groupby('店铺名称', as_index=False).agg({'销售数量': 'sum', '销售金额': 'mean'})
print(df3)

迭代分组

Pandas 支持迭代分组的操作,通过以下示例可以看到迭代分组的效果:

for group, data in df1.groupby('店铺名称'):
    print(group)  # 分组的键值
    print(data)  # 所有属于该分组的数据

条件过滤

根据条件过滤分组:

df4 = df1.groupby('店铺名称').filter(lambda x: x['销售金额'].sum() > 300)
print(df4)

转换分组及分组排序

最后,我们演示了分组数据的转换以及分组排序的操作:

df1['NewColumn'] = df1.groupby('店铺名称')['销售数量'].transform(lambda x:x.sum())
print(df1)

排序

df5 = df1.groupby('店铺名称').sum().sort_values('销售数量', ascending=True)
print(df5)

以上就是关于 Pandas 分组聚合操作的详细介绍,通过这些示例代码和解释,相信读者对 Pandas 中的分组聚合操作有了更深入的理解。

总结:在数据分析中,对数据进行分组聚合是一项常见且重要的操作,Pandas 提供了丰富的功能来实现这一目的,包括单列分组、多列分组、自定义聚合函数、迭代分组、数据导出、条件过滤、分组转换以及分组排序等操作,能够满足大部分数据分析需求。

完整代码

import pandas as pd
import numpy as np

# 读取两个 Excel 文件
df1 = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据1.xlsx')

#使用单个列进行分组,并应用聚合函数
df=df1.groupby('店铺名称', as_index=False).sum()
#df=df1.groupby('店铺名称', as_index=False).aggregate({'销售数量': 'sum'})
print(df)

#使用多个列进行分组,并应用聚合函数:
df2=df1.groupby(['店铺名称','订单号'], as_index=False).sum()
print(df2)

# 定义自定义聚合函数
def custom_agg(x):
    return x.max() - x.min()
# 使用自定义聚合函数对 'Column2' 进行聚合
result = df1.groupby('店铺名称', as_index=False)['销售数量'].agg(custom_agg)
print(result)

# 同时应用多个聚合函数
df3=df1.groupby('店铺名称', as_index=False).agg({'销售数量': 'sum', '销售金额': 'mean'})
print(df3)

# 迭代分组
for group, data in df1.groupby('店铺名称'):
    print(group)  # 分组的键值
    print(data)  # 所有属于该分组的数据

df3.to_excel('merged.xlsx', index=False)
print('这是一条数据分割线')

#根据条件过滤分组
df4=df1.groupby('店铺名称').filter(lambda x: x['销售金额'].sum() > 300)
print(df4)

#转换分组
df1['NewColumn'] = df1.groupby('店铺名称')['销售数量'].transform(lambda x:x.sum())  # 对 'Column2' 在每个分组内进行转换操作
#df=df1.groupby('店铺名称', as_index=False)['销售数量'].transform('sum')
print(df1)

#分组排序
df5=df1.groupby('店铺名称').sum().sort_values('销售数量', ascending=True)  # ascending=True 升序 ascending=False 降序
print(df5)

到此这篇关于Python Pandas中的分组聚合操作详解的文章就介绍到这了,更多相关Pandas分组聚合内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python实现测试工具(一)——命令行发送get请求

    python实现测试工具(一)——命令行发送get请求

    这篇文章主要介绍了python如何实现命令行发送get请求,帮助大家更好的利用python进行测试工作,感兴趣的朋友可以了解下
    2020-10-10
  • win7 下搭建sublime的python开发环境的配置方法

    win7 下搭建sublime的python开发环境的配置方法

    Sublime Text具有漂亮的用户界面和强大的功能,例如代码缩略图,Python的插件,代码段等。还可自定义键绑定,菜单和工具栏。Sublime Text的主要功能包括:拼写检查,书签,完整的 Python API,Goto功能,即时项目切换,多选择,多窗口等等。
    2014-06-06
  • Python Streamlit制作交互式可视化网页应用实例

    Python Streamlit制作交互式可视化网页应用实例

    这篇文章主要为大家介绍了Python Streamlit制作交互式可视化网页应用,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • Python List列表对象内置方法实例详解

    Python List列表对象内置方法实例详解

    这篇文章主要介绍了Python List列表对象内置方法,结合实例形式详细分析了Python列表list各种常用内置方法的功能与使用技巧,需要的朋友可以参考下
    2019-10-10
  • 基于Python 的语音重采样函数解析

    基于Python 的语音重采样函数解析

    这篇文章主要介绍了基于Python 的语音重采样函数解析,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-07-07
  • pandas DataFrame 删除重复的行的实现方法

    pandas DataFrame 删除重复的行的实现方法

    这篇文章主要介绍了pandas DataFrame 删除重复的行的实现方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-01-01
  • PyTorch实现线性回归详细过程

    PyTorch实现线性回归详细过程

    本文介绍PyTorch实现线性回归,线性关系是一种非常简单的变量之间的关系,因变量和自变量在线性关系的情况下,可以使用线性回归算法对一个或多个因变量和自变量间的线性关系进行建模,该模型的系数可以用最小二乘法进行求解,需要的朋友可以参考一下
    2022-03-03
  • 使用Numpy打乱数组或打乱矩阵行

    使用Numpy打乱数组或打乱矩阵行

    这篇文章主要介绍了使用Numpy打乱数组或打乱矩阵行问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-05-05
  • python使用OpenCV模块实现图像的融合示例代码

    python使用OpenCV模块实现图像的融合示例代码

    这篇文章主要介绍了python使用OpenCV模块实现图像的融合示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-04-04
  • python3 sorted 如何实现自定义排序标准

    python3 sorted 如何实现自定义排序标准

    这篇文章主要介绍了python3 sorted 如何实现自定义排序标准,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03

最新评论