Python traceback模块获取异常信息的使用

 更新时间:2023年12月14日 11:59:20   作者:hakesashou  
Python的traceback模块提供了多种方法来获取和展示异常的堆栈信息,本文主要介绍了Python traceback模块获取异常信息的使用,具有一定的参考价值,感兴趣的可以了解一下

异常对象提供了一个 with_traceback 用于处理异常的传播轨迹,查看异常的传播轨迹可追踪异常触发的源头,也可看到异常一路触发的轨迹。

下面示例显示了如何显示异常传播轨迹:

class SelfException(Exception): pass

def main():
    firstMethod()
def firstMethod():
    secondMethod()
def secondMethod():
    thirdMethod()
def thirdMethod():
    raise SelfException("自定义异常信息")
main()

上面程序中 main() 函数调用 firstMethod(),firstMethod() 调用 secondMethod(),secondMethod() 调用 thirdMethod(),thirdMethod() 直接引发一个 SelfException 异常。运行上面程序,将会看到如图所示的结果:

从图中可以看出,异常从 thirdMethod() 函数开始触发,传到 secondMethod() 函数,再传到 firstMethod() 函数,最后传到 main() 函数,在 main() 函数止,这个过程就是 Python 的异常传播轨迹。

在实际应用程序的开发中,大多数复杂操作都会被分解成一系列函数或方法调用。这是因为,为了具有更好的可重用性,会将每个可重用的代码单元定义成函数或方法,将复杂任务逐渐分解为更易管理的小型子任务。由于一个大的业务功能需要由多个函数或方法来共同实现,在最终编程模型中,很多对象将通过一系列函数或方法调用来实现通信,执行任务。

所以,当应用程序运行时,经常会发生一系列函数或方法调用,从而形成“函数调用战”。异常的传播则相反,只要异常没有被完全捕获(包括异常没有被捕获,或者异常被处理后重新引发了新异常),异常就从发生异常的函数或方法逐渐向外传播,首先传给该函数或方法的调用者,该函数或方法的调用者再传给其调用者,直至最后传到 Python 解释器,此时 Python 解释器会中止该程序,并打印异常的传播轨迹信息。

很多初学者一看到图 1 所示的异常提示信息,就会惊慌失措,他们以为程序出现了很多严重的错误,其实只有一个错误,系统提示那么多行信息,只不过是显示异常依次触发的轨迹。

其实图 所示的异常传播轨迹信息非常清晰,它记录了应用程序中执行停止的各个点。最后一行信息详细显示了异常的类型和异常的详细消息。从这一行向上,逐个记录了异常发生源头、异常依次传播所经过的轨迹,并标明异常发生在哪个文件、哪一行、哪个函数处。

Python 专门提供了 traceback 模块来处理异常传播轨迹,使用 traceback 可以方便地处理 Python 的异常传播轨迹。导入 traceback 模块之后,traceback 提供了如下两个常用方法:

traceback.print_exc():将异常传播轨迹信息输出到控制台或指定文件中。

format_exc():将异常传播轨迹信息转换成字符串。

可能有读者感到好奇,从上面方法看不出它们到底处理哪个异常的传播轨迹信息。实际上我们常用的 print_exc() 是 print_exc([limit[, file]]) 省略了 limit、file 两个参数的形式。而 print_exc([limit[, file]]) 的完整形式是 print_exception(etype, value, tb[,limit[, file]]),在完整形式中,前面三个参数用于分别指定异常的如下信息:

etype:指定异常类型;

value:指定异常值;

tb:指定异常的traceback 信息;

当程序处于 except 块中时,该 except 块所捕获的异常信息可通过 sys 对象来获取,其中 sys.exc_type、sys.exc_value、sys.exc_traceback 就代表当前 except 块内的异常类型、异常值和异常传播轨迹。

简单来说, print_exc([limit[, file]]) 相当于如下形式:

print_exception(sys.exc_etype, sys.exc_value, sys.exc_tb[, limit[, file]])

也就是说,使用 print_exc([limit[, file]]) 会自动处理当前 except 块所捕获的异常。该方法还涉及两个参数:

limit:用于限制显示异常传播的层数,比如函数 A 调用函数 B,函数 B 发生了异常,如果指定 limit=1,则只显示函数 A 里面发生的异常。如果不设置 limit 参数,则默认全部显示。

file:指定将异常传播轨迹信息输出到指定文件中。如果不指定该参数,则默认输出到控制台。

借助于 traceback 模块的帮助,我们可以使用 except 块捕获异常,并在其中打印异常传播信息,包括把它输出到文件中。例如如下程序:

# 导入trackback模块
import traceback
class SelfException(Exception): pass

def main():
    firstMethod()
def firstMethod():
    secondMethod()
def secondMethod():
    thirdMethod()
def thirdMethod():
    raise SelfException("自定义异常信息")
try:
    main()
except:
    # 捕捉异常,并将异常传播信息输出控制台
    traceback.print_exc()
    # 捕捉异常,并将异常传播信息输出指定文件中
    traceback.print_exc(file=open('log.txt', 'a'))

上面程序第一行先导入了 traceback 模块,接下来程序使用 except 捕获程序的异常,并使用 traceback 的 print_exc() 方法输出异常传播信息,分别将它输出到控制台和指定文件中。

运行上面程序,同样可以看到在控制台输出异常传播信息,而且在程序目录下生成了一个 log.txt 文件,该文件中同样记录了异常传播信息。

到此这篇关于Python traceback模块获取异常信息的使用的文章就介绍到这了,更多相关Python traceback获取异常信息内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python基础教程之增加和去除数字的千位分隔符

    Python基础教程之增加和去除数字的千位分隔符

    千位分隔符其实就是数字中的逗号,下面这篇文章主要给大家介绍了关于Python基础教程之增加和去除数字的千位分隔符,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2023-01-01
  • python os模块常用的29种方法使用详解

    python os模块常用的29种方法使用详解

    这篇文章主要介绍了python os模块常用的29种方法使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-06-06
  • Python 利用OpenCV给照片换底色的示例代码

    Python 利用OpenCV给照片换底色的示例代码

    这篇文章主要介绍了Python 利用OpenCV给照片换底色,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-08-08
  • SciPy中两个模块:io 和misc的使用

    SciPy中两个模块:io 和misc的使用

    这篇文章主要介绍了SciPy中两个模块:io 和misc的使用,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • Python如何使用Gitlab API实现批量的合并分支

    Python如何使用Gitlab API实现批量的合并分支

    这篇文章主要介绍了Python如何使用Gitlab API实现批量的合并分支,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-11-11
  • PySide2出现“ImportError: DLL load failed: 找不到指定的模块”的问题及解决方法

    PySide2出现“ImportError: DLL load failed: 找不到指定的模块”的问题及解决方法

    这篇文章主要介绍了PySide2出现“ImportError: DLL load failed: 找不到指定的模块”的问题及解决方法,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下
    2020-06-06
  • Pandas JSON的处理使用

    Pandas JSON的处理使用

    Pandas提供了强大的方法来处理JSON格式的数据,本文就来介绍一下Pandas JSON的处理使用,具有一定的参考价值,感兴趣的可以了解一下
    2025-02-02
  • python多线程方式执行多个bat代码

    python多线程方式执行多个bat代码

    这篇文章主要为大家详细介绍了python多线程方式执行多个bat的实现代码,感兴趣的小伙伴们可以参考一下
    2016-06-06
  • Python中规范定义命名空间的一些建议

    Python中规范定义命名空间的一些建议

    命名空间是Python程序的一大根本,编程时持命名空间的整洁还是十分必要的,这里就来为大家总结Python中规范定义命名空间的一些建议,需要的朋友可以参考下
    2016-06-06
  • python 序列解包的多种形式及用法解析

    python 序列解包的多种形式及用法解析

    这篇文章主要介绍了python 序列解包的多种形式及用法解析,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05

最新评论