numpy如何删除矩阵中的部分数据numpy.delete

 更新时间:2024年02月22日 10:36:30   作者:patrickpdx  
这篇文章主要介绍了numpy如何删除矩阵中的部分数据numpy.delete问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教

numpy删除矩阵中的部分数据

numpy.delete(arr ,id ,axis=None)

官方链接

功能:

(1)如果输入了axis,则把数组arraxis指定的维度进行切片,并删除掉id指定下标的元素

(2)如果没有输入axis,则把数组arr扁平化,并删除掉id指定下标的元素

示例:

import numpy as np
mat= np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
print('mat=',mat)
print('删除第0行:',np.delete(mat,0,axis=0))
print('删除第0列:',np.delete(mat,0,axis=1))

结果:

mat= [[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]
删除第0行: [[ 5  6  7  8]
 [ 9 10 11 12]]
删除第0列: [[ 2  3  4]
 [ 6  7  8]
 [10 11 12]]

从numpy数组中随机删除一部分数据

可以使用numpy中的random.choice函数随机选择数组的下标

numpy.random.choice(a, size=None, replace=True, p=None)
#a为一维数组或int值,为一维数组时会从该数组中随机选择元素,为int值时会先生成一个np.arange(a)的数组,然后从中随机选择元素
#size为int值,为选择元素的个数
#replace默认为True,意思是随机选择出的元素还会放回样本集中,即生成的数列中可能存在相同的元素,为False时就不会出现
#p为样本选择的概率,默认为一致分布

一维例子,二维直接这样也没有问题

import numpy as np
data=np.random.random(size=10)
data
Out[4]: 
array([ 0.21575642,  0.30620622,  0.01454852,  0.46253994,  0.11222712,
        0.32893411,  0.11040516,  0.51010326,  0.83162364,  0.84285834])
index_1=np.random.choice(data.shape[0],4,replace=False)
index_1
Out[6]: array([1, 4, 2, 3])
data1=data[index_1]
data1
Out[8]: array([ 0.30620622,  0.11222712,  0.01454852,  0.46253994])

然后我们如何获得剩下的数组中的内容呢,我们可以先生成原数组所有的下标,然后用np.delete函数删除之前随机生成的下标数组

# numpy.delete(arr,obj,axis=None) 
# arr:输入向量 
# obj:表明哪一个子向量应该被移除。可以为整数或一个int型的向量 
# axis:表明删除哪个轴的子向量,若默认,则返回一个被拉平的向量
index_2=np.arange(data.shape[0])
index_2
Out[10]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
index_2=np.delete(index_2,index_1)
index_2
Out[12]: array([0, 5, 6, 7, 8, 9])
data2=data[index_2]
data2
Out[14]: 
array([ 0.21575642,  0.32893411,  0.11040516,  0.51010326,  0.83162364,
        0.84285834])

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • python多线程抓取天涯帖子内容示例

    python多线程抓取天涯帖子内容示例

    这篇文章主要介绍了python多线程抓取天涯帖子内容示例,需要的朋友可以参考下
    2014-04-04
  • 一文带你搞懂Numpy中的深拷贝和浅拷贝

    一文带你搞懂Numpy中的深拷贝和浅拷贝

    深拷贝和浅拷贝是Python中重要的概念,本文将重点介绍在NumPy中深拷贝和浅拷贝相关操作的定义和背后的原理,快跟随小编一起来学习一下吧
    2022-04-04
  • python实现邻接表转邻接矩阵

    python实现邻接表转邻接矩阵

    这篇文章主要介绍了python实现邻接表转邻接矩阵,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-12-12
  • python 将html转换为pdf的几种方法

    python 将html转换为pdf的几种方法

    这篇文章主要介绍了python 将html转换为pdf的几种方法,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-12-12
  • 使用Python从图像中提取文本OCR库的操作详解

    使用Python从图像中提取文本OCR库的操作详解

    光学字符识别(OCR, Optical Character Recognition)是一种将印刷或手写文本从图像、PDF或扫描件中提取为机器可读文本的技术,使用Python进行OCR处理,开发者可以轻松调用各种OCR库,所以本文将给大家介绍使用Python从图像中提取文本OCR库的操作
    2024-08-08
  • python简单实现基于SSL的IRC bot实例

    python简单实现基于SSL的IRC bot实例

    这篇文章主要介绍了python简单实现基于SSL的IRC bot,实例分析了IRC机器人的相关实现技巧,需要的朋友可以参考下
    2015-06-06
  • Python学习之MRO方法搜索顺序

    Python学习之MRO方法搜索顺序

    这篇文章主要介绍了Python MRO方法搜索顺序,文中代码和图片解释的非常详细,可以很好的带大家学习相关知识内容,感兴趣的小伙伴可以参考一下这篇文章
    2021-09-09
  • python在不同条件下的输入与输出

    python在不同条件下的输入与输出

    在本篇文章里小编给大家整理的是关于python在不同条件下的输入与输出,有需要的朋友们可以学习下。
    2020-02-02
  • Jupyter Notebook运行Python代码实现传参方式

    Jupyter Notebook运行Python代码实现传参方式

    这篇文章主要介绍了Jupyter Notebook运行Python代码实现传参方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-07-07
  • python获取当前文件所在目录、获取上级目录的坑及解决

    python获取当前文件所在目录、获取上级目录的坑及解决

    这篇文章主要介绍了python获取当前文件所在目录、获取上级目录的坑及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08

最新评论