关于np.meshgrid函数中的indexing参数问题

 更新时间:2024年09月13日 09:49:58   作者:勤奋的大熊猫  
Meshgrid函数在二维与三维空间中用于生成坐标网格,便于进行图像处理和空间数据分析,二维情况下,默认使用笛卡尔坐标系,而三维meshgrid则涉及不同的坐标轴取法,在三维情况下,可能会出现坐标轴排列序混乱

meshgrid函数在二维空间中可以简单地理解为将x轴与y轴的每个位置的坐标关联起来形成了一个网格,我们知道空间中的点是由坐标确定的,因此,当x与y关联起来后,我们便可以给与某个点某个特定值并画出对应的图像。

具体的可以百度一下,会有很多较为详细的介绍。

这里我想要着重的说一下二维以及三维的meshgrid的参数indexing的问题。

二维meshgrid函数

import numpy as np


class Debug:
    def __init__(self):
        self.x = np.arange(5)
        self.y = np.arange(5)
        
    def grid(self):
        X, Y = np.meshgrid(self.x, self.y, indexing="xy")
        return X, Y
    

main = Debug()
X, Y = main.grid()
print("The X grid is:")
print(X)
print("The Y grid is:")
print(Y)
"""
The X grid is:
[[0 1 2 3 4]
 [0 1 2 3 4]
 [0 1 2 3 4]
 [0 1 2 3 4]
 [0 1 2 3 4]]
The Y grid is:
[[0 0 0 0 0]
 [1 1 1 1 1]
 [2 2 2 2 2]
 [3 3 3 3 3]
 [4 4 4 4 4]]
"""

从上面的结果可以看出,所获取的网格对应如下图所示,横向为x轴,纵向为y轴,类似于我们在几何空间中使用的坐标系, 我们通常称之为笛卡尔坐标系(Cartesian coordinate)。

在二维meshgrid网格创建命令中,笛卡尔坐标系是默认的坐标系。

然而在python编程中,还有一种较为常用的indexing取法,代码如下:

import numpy as np


class Debug:
    def __init__(self):
        self.x = np.arange(5)
        self.y = np.arange(5)
        
    def grid(self):
        X, Y = np.meshgrid(self.x, self.y, indexing="ij")
        return X, Y
    

main = Debug()
i, j = main.grid()
print("The i grid is:")
print(i)
print("The j grid is:")
print(j)
"""
The i grid is:
[[0 0 0 0 0]
 [1 1 1 1 1]
 [2 2 2 2 2]
 [3 3 3 3 3]
 [4 4 4 4 4]]
The j grid is:
[[0 1 2 3 4]
 [0 1 2 3 4]
 [0 1 2 3 4]
 [0 1 2 3 4]
 [0 1 2 3 4]]
"""

此时从上面的结果我们可以看出,所获取的网格对应如下图所示,纵向为i轴,横向为j轴,我们在编程中通常很少使用的这种坐标系。但是它也有自己的优势,这里不进一步说明。

三维meshgrid函数

进一步我们讨论三维的情况,代码如下:

import numpy as np


class Debug:
    def __init__(self):
        self.x = np.arange(3)
        self.y = np.arange(3)
        self.z = np.arange(3)
        
    def grid(self):
        X, Y, Z = np.meshgrid(self.x, self.y, self.z)
        return X, Y, Z
    

main = Debug()
X, Y, Z = main.grid()
print("The X grid is:")
print(X)
print("The Y grid is:")
print(Y)
print("The Z grid is:")
print(Z)
"""
The X grid is:
[[[0 0 0]
  [1 1 1]
  [2 2 2]]

 [[0 0 0]
  [1 1 1]
  [2 2 2]]

 [[0 0 0]
  [1 1 1]
  [2 2 2]]]
The Y grid is:
[[[0 0 0]
  [0 0 0]
  [0 0 0]]

 [[1 1 1]
  [1 1 1]
  [1 1 1]]

 [[2 2 2]
  [2 2 2]
  [2 2 2]]]
The Z grid is:
[[[0 1 2]
  [0 1 2]
  [0 1 2]]

 [[0 1 2]
  [0 1 2]
  [0 1 2]]

 [[0 1 2]
  [0 1 2]
  [0 1 2]]]
"""

由上面的结果我们可以看到,此时的坐标轴对应如下图像:

x轴向下,y轴向屏幕内侧,z轴向右侧,在三维图像中不再根据indexing值来区分坐标轴了,而是统一规定了坐标轴的取法,只有对于这个坐标轴的取法深入理解,才能在之后的三维数据处理中游刃有余。

特别说明

但是这里有一个问题,来看一组代码:

class Debug:
    def __init__(self):
        x = np.array([[[0],
                       [2]], [[4],
                              [6]], [[8],
                                     [10]]])
        print(x.shape)


main = Debug()
"""
(3, 2, 1)
"""

我们可以看到,输出结果为(3, 2, 1),即沿着x1个元素,沿着y2个元素,沿着z3个元素。

再来看一下我们使用meshgrid方法生成三维网格的情况。

import numpy as np


class Debug:
    def __init__(self):
        self.x = np.arange(1)
        self.y = np.arange(2)
        self.z = np.arange(3)

    def grid(self):
        X, Y, Z = np.meshgrid(self.x, self.y, self.z)
        return X, Y, Z


main = Debug()
X, Y, Z = main.grid()
print("The X grid is:")
print(X.shape)
print("The Y grid is:")
print(Y.shape)
print("The Z grid is:")
print(Z.shape)
"""
The X grid is:
(2, 1, 3)
The Y grid is:
(2, 1, 3)
The Z grid is:
(2, 1, 3)
"""

我们可以看到,最终输出的X,Y,Zshape均为(2, 1, 3),这对应的是沿着x3个元素,沿着y1个元素,沿着z2个元素。

突然感觉有些混乱,不符合我们之前想要得到的x,y,z的排列顺序,为了能够得到正常的排列顺序,我们可以使用如下代码:

import numpy as np


class Debug:
    def __init__(self):
        self.x = np.arange(1)
        self.y = np.arange(2)
        self.z = np.arange(3)

    def grid(self):
        X, Y, Z = np.meshgrid(self.y, self.z, self.x)
        return X, Y, Z


main = Debug()
X, Y, Z = main.grid()
print("The X grid is:")
print(X.shape)
print("The Y grid is:")
print(Y.shape)
print("The Z grid is:")
print(Z.shape)
"""
The X grid is:
(3, 2, 1)
The Y grid is:
(3, 2, 1)
The Z grid is:
(3, 2, 1)
"""

可以看到运行后我们得到了符合Python默认坐标轴习惯的网格形式,这时对应的x轴向右侧,y轴向下,z轴向屏幕里面。

这个仅仅是为了理解需要,实际操作中无需进行这种坐标轴变换操作,直接使用默认的三维坐标轴方向即可。

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • python flask基于cookie和session来实现会话控制的实战代码

    python flask基于cookie和session来实现会话控制的实战代码

    所谓的会话(session),就是客户端浏览器和服务端网站之间一次完整的交互过程,本文介绍falsk通过cookie和session来控制http会话的全部解析,通常我们可以用cookie和session来保持用户登录等,感兴趣的朋友一起看看吧
    2024-03-03
  • python实现带验证码网站的自动登陆实现代码

    python实现带验证码网站的自动登陆实现代码

    本例所登录的某网站需要提供用户名,密码和验证码,在此使用了python的urllib2直接登录网站并处理网站的Cookie
    2015-01-01
  • python3实现字符串的全排列的方法(无重复字符)

    python3实现字符串的全排列的方法(无重复字符)

    这篇文章主要介绍了python3实现字符串的全排列的方法(无重复字符),小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-07-07
  • 一百行python代码将图片转成字符画

    一百行python代码将图片转成字符画

    这篇文章主要为大家详细介绍了一百行python代码将图片转成字符画 ,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-11-11
  • python模拟实现分发扑克牌

    python模拟实现分发扑克牌

    这篇文章主要为大家详细介绍了python模拟实现分发扑克牌,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-04-04
  • Python实现直方图均衡基本原理解析

    Python实现直方图均衡基本原理解析

    这篇文章主要介绍了Python实现直方图均衡基本原理,本文给大家介绍的非常详细,具有一定的参考借鉴价值 ,需要的朋友可以参考下
    2019-08-08
  • Python 整行读取文本方法并去掉readlines换行\n操作

    Python 整行读取文本方法并去掉readlines换行\n操作

    这篇文章主要介绍了Python 整行读取文本方法并去掉readlines换行\n操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-09-09
  • python实现类的静态变量用法实例

    python实现类的静态变量用法实例

    这篇文章主要介绍了python实现类的静态变量用法,实例分析了Python中基于数组实现静态队列的相关使用技巧,需要的朋友可以参考下
    2015-05-05
  • node命令行服务器(http-server)和跨域的实现

    node命令行服务器(http-server)和跨域的实现

    本文主要介绍了node命令行服务器(http-server)和跨域的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • 你可能不知道的Python 技巧小结

    你可能不知道的Python 技巧小结

    有许许多多文章写了 Python 中的许多很酷的特性,例如变量解包、偏函数、枚举可迭代对象,但是关于 Python 还有很多要讨论的话题,因此在本文中,我将尝试展示一些我知道的和在使用的,但很少在其它文章提到过的特性。那就开始吧
    2020-01-01

最新评论