Python并发编程的几种实现方式

 更新时间:2024年10月05日 08:58:19   作者:一点sir  
Python并发编程让程序能同时执行多个任务,Python提供多种并发实现方式,包括多线程、多进程、异步编程等,多线程受全局解释器锁(GIL)影响,在CPU密集型任务上不提升性能,但适合I/O密集型任务,多进程适用于CPU密集型任务

Python 并发编程是指在 Python 中编写能够同时执行多个任务的程序。并发编程在任何一门语言当中都是比较难的,因为会涉及各种各样的问题,在Python当中也不例外。Python 提供了多种方式来实现并发,包括多线程(threading)、多进程(multiprocessing)、异步编程(asyncio),以及一些高级用法concurrent.futures和第三方库如gevent。

多线程 (Threading)

多线程是通过使用 threading 模块来创建和管理线程。线程是轻量级的过程,可以与同一进程中的其他线程共享数据和资源。然而,由于 Python 的全局解释器锁(GIL)的存在,如果用的解释器是CPython的话,那么多线程在 CPU 密集型任务上不会有性能提升的,但是IO密集型的是会有的。

import threading
import time

def worker(num):
    print(f"Worker {num} starting")
    time.sleep(2)
    print(f"Worker {num} finished")

threads = []
for i in range(5):
    t = threading.Thread(target=worker, args=(i,))
    threads.append(t)
    t.start()

# Wait for all threads to complete
for t in threads:
    t.join()
print("All workers finished.")

上面的例子中,通过threading模块中的Thread启动了另一个线程,输出中首先出现的是每个线程的启动消息,如 "Worker 0 starting",然后是 "Worker 1 starting" 等等。
接下来是每个线程的完成消息,如 "Worker 0 finished"。由于线程的执行顺序不是固定的,因此实际输出中的线程完成顺序可能会有所不同。

全局解释器锁(GIL)是历史历史遗留下来的问题,在Python3.13可能会得到解决。

多进程 (Multiprocessing)

多进程则可以通过使用 multiprocessing 模块来创建独立的进程。每个进程都有自己的内存空间,因此可以绕过 GIL,适用于 CPU 密集型任务。

from multiprocessing import Process
import time

def worker(num):
    print(f"Worker {num} starting")
    time.sleep(2)
    print(f"Worker {num} finished")

processes = []
for i in range(5):
    p = Process(target=worker, args=(i,))
    processes.append(p)
    p.start()

# Wait for all processes to complete
for p in processes:
    p.join()
print("All workers finished.")

多进程与多线程示例类似,但这里是在不同的进程中执行。通过multiprocessing模块中的Process启动了另一个进程,每个进程开始和完成的消息按顺序出现。由于进程之间没有共享内存,每个进程都在独立的环境中运行,因此输出中的完成顺序与启动顺序相同。

异步编程 (Asyncio)

Python 3.4 引入了 asyncio 模块,它是一个用于编写单线程并发代码的模块,使用 async 和 await 关键字。异步编程允许你编写并发代码,以非阻塞的方式运行。这非常适合 I/O 密集型任务,如网络请求、文件操作等。

import asyncio

async def worker(num):
    print(f"Worker {num} starting")
    await asyncio.sleep(2)
    print(f"Worker {num} finished")

async def main():
    tasks = [worker(i) for i in range(5)]
    await asyncio.gather(*tasks)

asyncio.run(main())
print("All workers finished.")

由于协程是基于事件循环的,因此输出中的完成顺序可能与启动顺序不同。异步编程也是python并发编程中比较重要的一个概念,后面很大篇幅都要围绕这个异步编程来展开的。

使用 concurrent.futures

concurrent.futures 提供了一个高层次的接口来处理并行执行的任务,实际上就是线程池或者进程池的玩意,这个池的概念就是线程或者进程用完不销毁,重复利用,具体后面展开说说。

示例

from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
import time

def worker(num):
    print(f"Worker {num} starting")
    time.sleep(2)
    return f"Worker {num} finished"

with ThreadPoolExecutor(max_workers=5) as executor:
    futures = [executor.submit(worker, i) for i in range(5)]

for future in futures:
    print(future.result())

print("All workers finished.")

首先,创建了一个最大容纳 5 个工作线程的线程池。然后,提交了 5 个 worker 任务到线程池中,并立即返回了 5 个 Future 对象。接着,程序遍历这些 Future 对象,等待每个任务完成,并打印它们的返回值。最后,打印所有工作线程已经完成的消息。不过还是那个问题,由于 Python 的全局解释器锁(GIL),在 CPU 密集型任务中,线程池并不会带来性能上的提升。

以上这些方法都可以根据你的具体需求来选择使用。如果你需要进行更多的细节控制或者有特定的性能要求,你还可以考虑使用更底层的 API 或者第三方库。

到此这篇关于Python并发编程的几种实现方式的文章就介绍到这了,更多相关Python并发编程的实现内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python批量处理工作簿和工作表的实现示例

    Python批量处理工作簿和工作表的实现示例

    本文主要介绍了使用Python批量处理工作簿和工作表,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-09-09
  • Python实现读取邮箱中的邮件功能示例【含文本及附件】

    Python实现读取邮箱中的邮件功能示例【含文本及附件】

    这篇文章主要介绍了Python实现读取邮箱中的邮件功能,可读取邮件文本及附件的功能,涉及Python针对邮件的获取、分析、保存等相关操作技巧,需要的朋友可以参考下
    2017-08-08
  • 基于Python实现千图成像工具的示例代码

    基于Python实现千图成像工具的示例代码

    千图成像也就是用N张图片组成一张图片的效果。这篇文章将利用Python语言编写一个简单的千图成像工具,感兴趣的小伙伴可以了解一下
    2022-07-07
  • 解读opencv中cv2.imread()返回值为None问题及解决

    解读opencv中cv2.imread()返回值为None问题及解决

    这篇文章主要介绍了解读opencv中cv2.imread()返回值为None问题及解决,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-11-11
  • pandas数据处理清洗实现中文地址拆分案例

    pandas数据处理清洗实现中文地址拆分案例

    因为后续数据分析工作需要用到地理维度进行分析,所以需要把login_place字段进行拆分成:国家、省份、地区。感兴趣的可以了解一下
    2021-06-06
  • Docker如何部署Python项目的实现详解

    Docker如何部署Python项目的实现详解

    这篇文章主要介绍了Docker如何部署Python项目的实现详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-10-10
  • Python通过wordcloud库实现将单词生成词云

    Python通过wordcloud库实现将单词生成词云

    Python的wordcloud库是一个用于生成词云的Python包,它可以将一段文本中出现频率高的单词按其出现频率大小以及颜色深浅排列成一个词云图形,从而更好地展示文本中的信息,你可以使用wordcloud库来生成各种类型的词云,本文就介绍了如何生成心型词云
    2023-06-06
  • python中的os.path.join使用方法详解

    python中的os.path.join使用方法详解

    这篇文章主要介绍了python中的os.path.join使用方法详解,os.path.join用于将多个路径拼接为一个完整路径,经常使用,但没了解过细节,直到今天遇到一个令人疑惑的问题,最后发现是os.path.join的问题,借此机会,记录下os.path.join的用法,需要的朋友可以参考下
    2023-11-11
  • Python pytest装饰器总结(实例详解)

    Python pytest装饰器总结(实例详解)

    这篇文章主要介绍了Python pytest装饰器总结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-04-04
  • 详解Python中的上下文管理器原理

    详解Python中的上下文管理器原理

    这篇文章主要为大家详细介绍了Python中的上下文管理器的原理与使用,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-03-03

最新评论