使用Python中wordcloud库绘制词云图的详细教程

 更新时间:2024年12月05日 11:26:41   作者:小高要坚强  
这篇文章主要介绍了如何使用Python的wordcloud库从Excel数据生成词云图,包括环境准备、词云图的基本原理、生成词云图的步骤、保存词云图以及高级自定义(形状与颜色),文中通过代码介绍的非常详细,需要的朋友可以参考下

前言

词云图(Word Cloud)是数据可视化中常用的一种技术,通过将文字以不同的大小、颜色和方向排列,以展示文本数据中词汇的频次和重要性。对于文本分析、情感分析、关键词提取等应用,词云图都能够直观地展现信息。本文将详细介绍如何使用 Python 中的 wordcloud 库从 Excel 数据绘制词云图,帮助您快速上手词云图的生成和定制化。

一、环境准备

在开始之前,请确保您的开发环境中已经安装了以下库:

pip install wordcloud pandas matplotlib openpyxl
  • wordcloud:用于生成词云图。
  • pandas:处理 Excel 文件中的词频数据。
  • matplotlib:用于展示和保存词云图。
  • openpyxl:读取 Excel 文件。

二、词云图的基本原理

词云图的生成主要基于词汇的频数,频数越高的词汇在图中的字号越大。在 Python 中,wordcloud 库提供了多种自定义选项,例如字体、颜色、形状、最大词数等。接下来,我们将基于一个简单的 Excel 词频表格,逐步实现从数据加载到词云图绘制的过程。

1.步骤一:读取 Excel 文件

首先,使用 pandas 读取 Excel 文件,并确保将词汇和对应的频数提取出来。假设 Excel 文件包含两列:词汇 和 频数。

import pandas as pd

# 读取 Excel 文件
df = pd.read_excel('词汇频数表.xlsx')

# 确保数据按需加载
words = df['词汇'].values
frequencies = df['频数'].values

# 将词汇和频数组合成字典
word_freq = dict(zip(words, frequencies))

此时,word_freq 字典包含了词汇和它们对应的频数,格式如:{‘词汇1’: 10, ‘词汇2’: 15, …}。

2.步骤二:生成词云图

接下来,我们利用 wordcloud 库生成词云图。可以根据实际需求自定义词云图的显示样式。

from wordcloud import WordCloud
import matplotlib.pyplot as plt

# 创建词云对象
wordcloud = WordCloud(
    font_path='simhei.ttf',  # 设置字体路径,确保中文显示
    background_color='white',  # 背景色
    width=800,  # 图像宽度
    height=400,  # 图像高度
    max_words=200,  # 最大词汇数
    max_font_size=100,  # 最大字体大小
    colormap='viridis'  # 颜色方案
).generate_from_frequencies(word_freq)

# 绘制并展示词云图
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')  # 关闭坐标轴
plt.show()

参数说明

  • font_path:指定字体文件路径,这里使用了 “simhei.ttf” 以确保中文能够正确显示。
  • background_color:设置背景颜色,可选值包括 black, white, gray 等。
  • width 和 height:控制词云图的尺寸。
  • max_words:控制词云图中显示的最大词汇数。
  • max_font_size:控制最大字体的字号。
  • colormap:控制颜色映射方案,支持多种内置方案如 viridis, plasma, inferno 等。

3.步骤三:保存词云图

绘制完成后,您可以将词云图保存为图片文件,便于分享和展示。

# 保存词云图到文件
wordcloud.to_file('wordcloud.png')

一般在该步骤就已经结束啦~

4.步骤四:高级自定义(形状与颜色)

(1)自定义形状词云图不仅可以是矩形,还可以根据特定的形状生成。例如,将词云限制在一张图片的轮廓内。您可以通过以下方法实现:

from PIL import Image
import numpy as np

# 加载形状模板图片
mask = np.array(Image.open('mask.png'))

# 生成带有形状的词云
wordcloud = WordCloud(
    font_path='simhei.ttf',
    background_color='white',
    mask=mask,  # 设置词云形状
    contour_width=1,  # 轮廓宽度
    contour_color='black'  # 轮廓颜色
).generate_from_frequencies(word_freq)

# 展示词云图
plt.figure(figsize=(10, 10))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.show()

关键点讲解

  • 高清图片作为 mask
    使用高分辨率的黑白圆形图片,词云的清晰度会显著提升。白色部分将作为背景,黑色部分是生成词云的区域。

  • contour_width 和 contour_color 参数
    设置轮廓宽度和颜色,可以让词云图的形状更加突出。

  • 调整 max_font_size 和 max_words
    通过控制词汇数量和最大字体大小,确保词云图在形状内分布均匀且美观。

    这是换了一个爱丽丝Alice的mask的词云图。
    (2)自定义颜色如果想让词云中的词汇颜色更加多样,可以使用 ImageColorGenerator 从图片中提取颜色:

from wordcloud import ImageColorGenerator

# 基于模板图片生成颜色
image_colors = ImageColorGenerator(mask)

# 绘制词云图并应用颜色
plt.figure(figsize=(10, 10))
plt.imshow(wordcloud.recolor(color_func=image_colors), interpolation='bilinear')
plt.axis('off')
plt.show()

三、常见问题与解决方案

1.中文乱码问题:

使用 wordcloud 生成词云时,若不指定中文字体,中文会显示为方块。解决方法是指定支持中文的字体,例如 “simhei.ttf”。

2.词云生成不均匀:

尝试调整 max_font_size 和 mask 参数,使词云分布更为美观。

四、总结

本文详细介绍了如何从 Excel 表格生成词云图,并通过实例展示了词云图的自定义生成方法。词云图作为一种直观的数据可视化手段,在文本分析中有着广泛应用。可以再结合深度学习的自然语言处理技术,词云图可以进一步扩展用于更复杂的文本挖掘场景。

到此这篇关于使用Python中wordcloud库绘制词云图的文章就介绍到这了,更多相关Python绘制词云图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python生成requirements.txt的两种方法

    python生成requirements.txt的两种方法

    这篇文章主要介绍了python生成requirements.txt的两种方法,每种方法给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-09-09
  • 10个使用Python必须知道的内置函数

    10个使用Python必须知道的内置函数

    这篇文章小编主要向大家介绍的是10个使用Python必须知道的内置函数reduce()、split()、map()等,更多后置函数请看下文
    2021-09-09
  • 用Python实现最速下降法求极值的方法

    用Python实现最速下降法求极值的方法

    今天小编就为大家分享一篇用Python实现最速下降法求极值的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Python生成xml文件方法示例

    Python生成xml文件方法示例

    Python标准库xml.etree.ElementTree提供了一些生成XML的工具,可以用于创建和操作XML文档,本文就来介绍以下如何生成生成xml文件,感兴趣的可以了解一下
    2023-09-09
  • Python流行ORM框架sqlalchemy的简单使用

    Python流行ORM框架sqlalchemy的简单使用

    这篇文章主要介绍了Python流行ORM框架sqlalchemy的简单使用,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-07-07
  • python使用datetime模块计算各种时间间隔的方法

    python使用datetime模块计算各种时间间隔的方法

    这篇文章主要介绍了python使用datetime模块计算各种时间间隔的方法,实例分析了Python使用datetime模块进行各种常用的时间操作技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-03-03
  • python 对多个csv文件分别进行处理的方法

    python 对多个csv文件分别进行处理的方法

    今天小编就为大家分享一篇python 对多个csv文件分别进行处理的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • 向量化操作改进数据分析工作流的Pandas Numpy示例分析

    向量化操作改进数据分析工作流的Pandas Numpy示例分析

    这篇文章主要介绍了向量化操作改进数据分析工作流的Pandas Numpy示例分析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-10-10
  • Odoo中如何生成唯一不重复的序列号详解

    Odoo中如何生成唯一不重复的序列号详解

    这篇文章主要给大家介绍了关于Odoo中如何生成唯一不重复的序列号的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧。
    2018-02-02
  • Python yield 使用浅析

    Python yield 使用浅析

    这篇文章主要介绍了Python yield 使用浅析,本文给出了多个使用实例来分析yield的使用方法,需要的朋友可以参考下
    2015-05-05

最新评论