轻松掌握python的dataclass让你的代码更简洁优雅

 更新时间:2025年01月06日 09:46:17   作者:wang_yb  
本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默认值、隐藏敏感信息、设置只读对象以及将其转化为元组和字典,通过使用dataclass,我们可以更高效地进行数据分析和处理,感兴趣的朋友跟随小编一起看看吧

dataclass是从Python3.7版本开始,作为标准库中的模块被引入。
随着Python版本的不断更新,dataclass也逐步发展和完善,为Python开发者提供了更加便捷的数据类创建和管理方式。

dataclass的主要功能在于帮助我们简化数据类的定义过程。
本文总结了几个我平时使用较多dataclass技巧。

1. 传统的类定义方式

首先,从平时量化分析的场景中简化一个关于 币交易 的类用来演示。
简化之后,这里只保留5个字段,分别是交易ID交易对价格是否成功参与交易的地址列表

class CoinTrans:
    def __init__(
        self,
        id: str,
        symbol: str,
        price: float,
        is_success: bool,
        addrs: list,
    ) -> None:
        self.id = id
        self.symbol = symbol
        self.price = price
        self.addrs = addrs
        self.is_success = is_success

Python传统定义类的方式,如上通过__init__函数来初始化对象的各个属性。

通过这个类构造对象并打印:

if __name__ == "__main__":
    coin_trans = CoinTrans("id01", "BTC/USDT", "71000", True, ["0x1111", "0x2222"])
    print(coin_trans)

运行结果:

<__main__.CoinTrans object at 0x0000022A891FADD0>

这里只是打印出对象的地址,并没有按照我们期望的那样打印对象各个属性的值。

传统的类中,我们如果希望打印出可读的结果,需要自己去实现__str__函数。

# 在上面的 CoinTrans 类中添加下面的方法
def __str__(self) -> str:
    return f"交易信息:{self.id}, {self.symbol}, {self.price}, {self.addrs}, {self.is_success}"

再次运行,结果如下:

交易信息:id01, BTC/USDT, 71000, ['0x1111', '0x2222'], True

2. dataclass装饰器定义类

下面看看使用dataclass装饰器来定义上面同样的类有多简单。

from dataclasses import dataclass
@dataclass
class CoinTrans:
    id: str
    symbol: str
    price: float
    is_success: bool
    addrs: list

再次运行:

if __name__ == "__main__":
    coin_trans = CoinTrans("id01", "BTC/USDT", "71000", True, ["0x1111", "0x2222"])
    print(coin_trans)

得到如下结果:

CoinTrans(id='id01', symbol='BTC/USDT', price='71000', is_success=True, addrs=['0x1111', '0x2222'])

不需要__init__,也不需要__str__,只要通过 @dataclass装饰之后,就可以打印出对象的具体内容。

2.1. 默认值

dataclass装饰器的方式来定义类,设置默认值很简单,直接在定义属性时就可以设置。

@dataclass
class CoinTrans:
    id: str = "id01"
    symbol: str = "BTC/USDT"
    price: float = "71000.8"
    is_success: bool = True
    addrs: list[str] = ["0x1111", "0x2222"]
if __name__ == "__main__":
    coin_trans = CoinTrans()
    print(coin_trans)

运行之后发现,在addrs属性那行会报错:

ValueError: mutable default <class 'list'> for field addrs is not allowed: use default_factory

大概的意思就是,list作为一种可变的类型(引用类型,会有被其他对象意外修改的风险),不能直接作为默认值,需要用工厂方法来产生默认值。
其他字符串,数值,布尔类型的数据则没有这个问题。

我们只要定义个函数来产生此默认值即可。

def gen_list():
    return ["0x1111", "0x2222"]
@dataclass
class CoinTrans:
    id: str = "id01"
    symbol: str = "BTC/USDT"
    price: float = "71000.8"
    is_success: bool = True
    addrs: list[str] = field(default_factory=gen_list)
if __name__ == "__main__":
    coin_trans = CoinTrans()
    print(coin_trans)

再次运行,可以正常执行:

CoinTrans(id='id01', symbol='BTC/USDT', price='71000.8', is_success=True, addrs=['0x1111', '0x2222']

2.2. 隐藏敏感信息

我们打印对象信息的时候,有时执行打印其中几个属性的信息,涉及敏感信息的属性不希望打印出来。
比如,上面的对象,如果不想打印出is_successaddrs的信息,可以设置repr=False

@dataclass
class CoinTrans:
    id: str = "id01"
    symbol: str = "BTC/USDT"
    price: float = "71000.8"
    is_success: bool = field(default=True, repr=False)
    addrs: list[str] = field(default_factory=gen_list, repr=False)

再次运行后显示:

CoinTrans(id='id01', symbol='BTC/USDT', price='71000.8')

2.3. 只读对象

数据分析时,大部分下情况下,原始数据读取之后是不能修改的。
这种情况下,我们可以用dataclassfrozen属性来设置数据类只读,防止不小心篡改了数据。

未设置frozen属性之前,可以随意修改对象的属性,比如:

if __name__ == "__main__":
    coin_trans = CoinTrans()
    print(f"修改前: {coin_trans}")
    coin_trans.symbol = "ETH/USDT"
    print(f"修改后: {coin_trans}")

运行结果:

修改前: CoinTrans(id='id01', symbol='BTC/USDT', price='71000.8')
修改后: CoinTrans(id='id01', symbol='ETH/USDT', price='71000.8')

设置frozen属性之后,看看修改属性值会怎么样:

@dataclass(frozen=True)
class CoinTrans:
    id: str = "id01"
    #... 省略 ...

再次运行,会发现修改属性会触发异常。

修改前: CoinTrans(id='id01', symbol='BTC/USDT', price='71000.8')
Traceback (most recent call last):
  File "D:\projects\python\samples\data_classes\main.py", line 66, in <module>
    coin_trans.symbol = "ETH/USDT"
    ^^^^^^^^^^^^^^^^^
  File "<string>", line 4, in __setattr__
dataclasses.FrozenInstanceError: cannot assign to field 'symbol'

2.4. 转化为元组和字典

最后,dataclasses模块还提供了两个函数可以很方便的将数据类转换为元组字典
这在和其他分析程序交互时非常有用,因为和其他程序交互时,参数一般都用元组或者字典这种简单通用的结构,
而不会直接用自己定义的数据类。

from dataclasses import dataclass, field, astuple, asdict
if __name__ == "__main__":
    coin_trans = CoinTrans()
    print(astuple(coin_trans))
    print(asdict(coin_trans))

运行结果:

('id01', 'BTC/USDT', '71000.8', True, ['0x1111', '0x2222'])
{'id': 'id01', 'symbol': 'BTC/USDT', 'price': '71000.8', 'is_success': True, 'addrs': ['0x1111', '0x2222']}

3. 总结

Python中,数据类主要用于存储数据,并通常包含属性和方法来操作这些数据。
然而,在定义数据类时,我们通常需要编写一些重复性的代码,如构造函数、属性访问器和字符串表示等。
dataclass装饰器的出现,使得这些通用方法的生成变得自动化,从而极大地简化了数据类的定义过程。

总的来说,dataclass通过简化数据类的创建和管理过程,提高了开发效率,是我们在数据分析时的一个非常有用的工具。

到此这篇关于掌握python的dataclass,让你的代码更简洁优雅的文章就介绍到这了,更多相关python dataclass内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • pycharm 无法加载文件activate.ps1的原因分析及解决方法

    pycharm 无法加载文件activate.ps1的原因分析及解决方法

    这篇文章主要介绍了pycharm报错提示:无法加载文件\venv\Scripts\activate.ps1,因为在此系统上禁止运行脚本,解决方法终端输入get-executionpolicy,回车返回Restricted即可,需要的朋友可以参考下
    2022-11-11
  • YOLOv5在图片上显示统计出单一检测目标的个数实例代码

    YOLOv5在图片上显示统计出单一检测目标的个数实例代码

    各位读者首先要认识到的问题是,在YOLOv5中完成锚框计数是一件非常简单的工作,下面这篇文章主要给大家介绍了关于YOLOv5如何在图片上显示统计出单一检测目标的个数的相关资料,需要的朋友可以参考下
    2023-03-03
  • Python如何限制输入的数范围

    Python如何限制输入的数范围

    在Python中,我们可以使用多种方法来限制用户输入的数值范围,今天通过实例代码给大家分享Python限制输入的数范围,感兴趣的朋友一起看看吧
    2024-05-05
  • Python 数据可视化之Seaborn详解

    Python 数据可视化之Seaborn详解

    这篇文章主要介绍了Python数据可视化库seaborn的使用总结,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2021-11-11
  • QML实现钟表效果

    QML实现钟表效果

    这篇文章主要为大家详细介绍了QML实现钟表效果,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-06-06
  • Python实现滑块验证码详解

    Python实现滑块验证码详解

    验证码作为一种自然人的机器人的判别工具,被广泛的用于各种防止程序做自动化的场景中。传统的字符型验证安全性已经名存实亡的情况下,各种新型的验证码如雨后春笋般涌现,今天给大家分享一篇Python实现滑块验证码
    2022-05-05
  • Python实现简单截取中文字符串的方法

    Python实现简单截取中文字符串的方法

    这篇文章主要介绍了Python实现简单截取中文字符串的方法,涉及Python字符串截取与编码转换的相关技巧,需要的朋友可以参考下
    2015-06-06
  • python爬虫实战之最简单的网页爬虫教程

    python爬虫实战之最简单的网页爬虫教程

    在我们日常上网浏览网页的时候,经常会看到一些好看的图片,我们就希望把这些图片保存下载,或者用户用来做桌面壁纸,或者用来做设计的素材。下面这篇文章就来给大家介绍了关于利用python实现最简单的网页爬虫的相关资料,需要的朋友可以参考借鉴,下面来一起看看吧。
    2017-08-08
  • python 列表递归求和、计数、求最大元素的实例

    python 列表递归求和、计数、求最大元素的实例

    今天小编就为大家分享一篇python 列表递归求和、计数、求最大元素的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-11-11
  • 基于Python实现万年历制作

    基于Python实现万年历制作

    制作一个万年历是一个有趣的Python项目,它可以让您查看任何年份的日历并获得特定日期的信息,下面我们就来看看具体是如何使用Python实现的吧
    2023-12-12

最新评论