PyTorch环境中CUDA版本冲突问题排查与解决方案

 更新时间:2025年02月27日 09:44:27   作者:昊大侠  
在使用 PyTorch 进行深度学习开发时,CUDA 版本兼容性问题是个老生常谈的话题,本文将通过一次真实的排查过程,剖析 PyTorch 虚拟环境自带 CUDA 运行时库与系统全局 CUDA 环境冲突的场景,需要的朋友可以参考下

引言

在使用 PyTorch 进行深度学习开发时,CUDA 版本兼容性问题是个老生常谈的话题。本文将通过一次真实的排查过程,剖析 PyTorch 虚拟环境自带 CUDA 运行时库与系统全局 CUDA 环境冲突的场景,并一步步分析问题、定位原因,并最终给出解决方案。

问题复现:ImportError: undefined symbol

始于一个看似简单的 import torch 语句

(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ python
Python 3.12.9 (main, Feb 12 2025, 14:50:50) [Clang 19.1.6 ] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>> import torch
>>> Traceback (most recent call last):
>>> File "<stdin>", line 1, in <module>
>>> File "/home/wangh/codes/ModelForger/.venv/lib/python3.12/site-packages/torch/__init__.py", line 367, in <module>
>>> from torch._C import *  # noqa: F403
>>> ^^^^^^^^^^^^^^^^^^^^^^
>>> ImportError: /home/wangh/codes/ModelForger/.venv/lib/python3.12/site-packages/torch/lib/../../nvidia/cusparse/lib/libcusparse.so.12: undefined symbol: __nvJitLinkComplete_12_4, version libnvJitLink.so.12

错误信息很明确,在 libcusparse.so.12 中找不到符号 __nvJitLinkComplete_12_4,这通常意味着存在版本不匹配的问题。

初步排查:环境 & CUDA 版本

首先,我们检查一下环境和 CUDA 版本

(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ echo $LD_LIBRARY_PATH
/usr/local/cuda/lib64:

(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Wed_Nov_22_10:17:15_PST_2023
Cuda compilation tools, release 12.3, V12.3.107
Build cuda_12.3.r12.3/compiler.33567101_0

(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ uv pip list | grep nvidia
Using Python 3.12.9 environment at: /home/wangh/codes/ModelForger/.venv
nvidia-cublas-cu12        12.4.5.8
nvidia-cuda-cupti-cu12    12.4.127
nvidia-cuda-nvrtc-cu12    12.4.127
nvidia-cuda-runtime-cu12  12.4.127
nvidia-cudnn-cu12         9.1.0.70
nvidia-cufft-cu12         11.2.1.3
nvidia-curand-cu12        10.3.5.147
nvidia-cusolver-cu12      11.6.1.9
nvidia-cusparse-cu12      12.3.1.170
nvidia-nccl-cu12          2.21.5
nvidia-nvjitlink-cu12     12.4.127
nvidia-nvtx-cu12          12.4.127

发现了两个关键信息

  1. nvcc --version 系统安装的 CUDA 版本是 12.3。
  2. nvidia-* 虚拟环境安装的 nvjitlink 版本号为 12.4.127。

根据错误信息可知,PyTorch 虚拟环境中的动态库 libcusparse.so.12 需要的正是 libnvJitLink.so.12 的 __nvJitLinkComplete_12_4 版本,pip 安装的依赖包版本自身没有问题,因此推测可能错误链接到了系统中 CUDA 12.3 的 libnvJitLink.so.12

分析:动态链接库加载路径

为了验证猜想,我们使用 patchelf 和 ldd 命令查看 libcusparse.so.12 的动态链接状态:

(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ patchelf --print-rpath libcusparse.so.12
$ORIGIN:$ORIGIN/../../nvjitlink/lib

(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ ldd libcusparse.so.12
        linux-vdso.so.1 (0x00007ffc507e2000)
        libnvJitLink.so.12 => /usr/local/cuda/lib64/libnvJitLink.so.12 (0x00007f867a399000)
        libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f867a353000)
        librt.so.1 => /lib/x86_64-linux-gnu/librt.so.1 (0x00007f867a349000)
        libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f867a343000)
        libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f867a1f4000)
        libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f867a1d7000)
        libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f8679fe5000)
        /lib64/ld-linux-x86-64.so.2 (0x00007f868e62d000)

果不其然 libcusparse.so.12 依赖的 libnvJitLink.so.12 被加载到了系统 CUDA 目录 (/usr/local/cuda/lib64) 下,而不是预定义的 PyTorch 虚拟环境的目录。

问题根源:LD_LIBRARY_PATH 优先级

(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ echo $LD_LIBRARY_PATH
/usr/local/cuda/lib64:

至此,问题根源已经明确:LD_LIBRARY_PATH 环境变量导致系统 CUDA 库路径优先于 PyTorch 虚拟环境的 CUDA 库路径被加载。这导致了版本不匹配,PyTorch 无法找到所需的符号。

解决方案:unset LD_LIBRARY_PATH

解决这个问题最直接的方法就是移除 LD_LIBRARY_PATH 对系统 CUDA 路径的设置:

(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ unset LD_LIBRARY_PATH

再次查看 libcusparse.so.12 的动态链接:

(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ ldd libcusparse.so.12
        linux-vdso.so.1 (0x00007fff959a7000)
        libnvJitLink.so.12 => /home/wangh/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib/./../../nvjitlink/lib/libnvJitLink.so.12 (0x00007f303000e000)
        libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f302ffc8000)
        librt.so.1 => /lib/x86_64-linux-gnu/librt.so.1 (0x00007f302ffbe000)
        libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f302ffb8000)
        libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f302fe69000)
        libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f302fe4c000)
        libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f302fc5a000)
        /lib64/ld-linux-x86-64.so.2 (0x00007f30443f9000)

现在,libnvJitLink.so.12 正确地加载到了 PyTorch 虚拟环境的目录下。

验证:问题解决

(modelforger) wangh@ubuntu:~/codes/ModelForger/.venv/lib/python3.12/site-packages/nvidia/cusparse/lib$ python
Python 3.12.9 (main, Feb 12 2025, 14:50:50) [Clang 19.1.6 ] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch

import torch 成功!问题解决。

最佳实践与总结

  • 避免全局设置 LD_LIBRARY_PATH: 在全局环境变量(如 .bashrc 或 .bash_profile)中设置 LD_LIBRARY_PATH 会干扰虚拟环境的独立性。
  • 理解动态链接机制: 了解 LD_LIBRARY_PATH 的作用以及动态链接库的加载顺序,有助于快速定位和解决类似问题。

以上就是PyTorch环境中CUDA版本冲突问题排查与解决方案的详细内容,更多关于PyTorch CUDA版本冲突的资料请关注脚本之家其它相关文章!

相关文章

  • python中time包实例详解

    python中time包实例详解

    在本篇文章里小编给大家整理的是一篇关于python中time包实例详解内容,对此有兴趣的朋友们可以学习下。
    2021-02-02
  • django 前端页面如何实现显示前N条数据

    django 前端页面如何实现显示前N条数据

    这篇文章主要介绍了django 前端页面如何实现显示前N条数据。具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • python3正则提取字符串里的中文实例

    python3正则提取字符串里的中文实例

    今天小编就为大家分享一篇python3正则提取字符串里的中文实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • python3.7 打包成exe程序方式(只需两行命令)

    python3.7 打包成exe程序方式(只需两行命令)

    这篇文章主要介绍了python3.7 打包成exe程序方式(只需两行命令),具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-02-02
  • Python 列表(List)操作方法详解

    Python 列表(List)操作方法详解

    这篇文章主要介绍了Python中列表(List)的详解操作方法,包含创建、访问、更新、删除、其它操作等,需要的朋友可以参考下
    2014-03-03
  • Python多线程正确用法实例解析

    Python多线程正确用法实例解析

    这篇文章主要介绍了Python多线程正确用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-05-05
  • django model通过字典更新数据实例

    django model通过字典更新数据实例

    这篇文章主要介绍了django model通过字典更新数据实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • Python线性分类介绍

    Python线性分类介绍

    这篇文章主要介绍了Python线性分类,线性分类指在机器学习领域,分类的目标是指将具有相似特征的对象聚集。而一个线性分类器则透过特征的线性组合来做出分类决定,以达到此种目的。对象的特征通常被描述为特征值,而在向量中则描述为特征向量,需要的朋友可以参考下
    2022-02-02
  • python字典各式各样操作从基础到高级全面示例详解

    python字典各式各样操作从基础到高级全面示例详解

    在Python中,字典(Dictionary)是一种强大而灵活的数据结构,它允许你存储和检索键值对,本文将深入探讨Python中各式各样的字典操作,包括基本操作、高级操作以及一些实用的技巧,通过全面的示例代码,将展示如何充分发挥字典在Python编程中的优势
    2023-12-12
  • Python与C语言分别完成排序流程

    Python与C语言分别完成排序流程

    这篇文章主要介绍了Python与C语言分别完成排序的实例,在Python与C语言基本类型的排序中特别有用,下面我们一起进入文章学习更详细的内容吧,需要的朋友可以参考下
    2022-03-03

最新评论