opencv矩形轮廓顶点的具体位置确定的两种实现方法

 更新时间:2025年07月08日 09:26:41   作者:qq_47150350  
本文主要介绍了opencv矩形轮廓顶点的具体位置确定,通过线性规划和最小面积矩两种方法定位纸张四个顶点,具有一定的参考价值,感兴趣的可以了解一下

一、问题的引入

opencv在图像处理方面有着非常强大的功能,当我们需要使用opencv进行一些图像的矫正工作时,我们通常需要找到原图的一些关键点,然后计算变换后的图像坐标,最后通过仿射变换或者透视变换获得自己想要的矫正图像,比如将一张拍歪了的纸进行矫正,我们的首要任务就是找到原图的一些关键点,通常的做法就是找纸张的4个顶点。

二、问题的解决方法

第一步我们肯定要找到纸张相应的矩形轮廓,这里可以二值化再找,也可以使用一些算子查找,而本文的重点是解决怎样根据矩形轮廓去确定它具体的4个顶点的位置。

方法一:

使用线性规划的方法,在opencv的坐标系下使用x+y=z1和x-y=z2两条直线去切轮廓,分别当z1取最大时(x,y)是右下点,最小时是左上点;当z2取最大时(x,y)是右上点,最小时是左下点,如下图:

这个方法单独从轮廓的角度来说,只要旋转的角度不要刚刚好是45°或者135°,这个方法就没有问题,它得到的就是轮廓相对应的右下点、左上点、右上点、左下点,但不是原目标的相应点,就好像当纸张旋转超过45°时,这个方法得到的对于轮廓来说是正确的,但对于纸张来说就不对了,如下图:

这个时候如果按之前的一样进行矫正就会得到一个横放的纸张,这样里面的字都是横的,就不是我们想要的了所以这个方法要用来矫正的话,就需要对图像的旋转角度有一个计算和判断,可以通过下面代码获取角度:

#cnt:输入轮廓,angle:返回角度
(x,y),(MA,ma),angle = cv2.fitEllipse(cnt)

方法二

这个方法首先要使用轮廓获得其最小面积矩,然后观察研究矩形的性质可以根据当前的形状给出适合的x,y判断式,观察下图:

#找轮廓最小矩 cnt:轮廓  box:4个点无规律
rect = cv2.minAreaRect(cnt)
box = cv2.boxPoints(rect)

对于这样一个高比宽长的矩形,我们的方法是先将4个点按y从小到大进行排序,再取前两个按x从小到大进行排序,小的那个是左下,大的那个是右下;最后取后两个也按x从小到大进行排序,小的那个是左上,大的那个是右上。假如是一个宽比高长的矩形,我们就可以先按x的大小进行排序。这个从代码角度实现可能更为简洁,适用特定轮廓,对角度要求就更宽泛了些,除非旋转到了像上图右边一样的状况,而这种矫正一般出现的机率非常小。

三、一些实现代码

1、下面是使用方法一实现的顶点定位

import numpy as np
import cv2
def get4points(img: np.ndarray, thed, n):
    """
    :param img  the color image which shape is [height, width, depth]
    :return 4 point locations in list or tuple, for example: [[x1, y1], [x2, y2], [x3, y3], [x4, y4]]
    """

    #灰度和二值化
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    ret, binary = cv2.threshold(gray,thed,255,cv2.THRESH_BINARY)

    # 搜索轮廓
    contours, hierarchy = cv2.findContours(
        binary,
        cv2.RETR_LIST,
        cv2.CHAIN_APPROX_SIMPLE)

    #按轮廓长度选取需要轮廓
    len_list = []
    for i in range(len(contours)):
        len_list.append(len(contours[i]))

    #选第二长的
    sy = np.argsort(np.array(len_list))[-n]

    #寻找顶点
    sum_list = []
    dif_list = []
    for i in contours[sy]:
        sum = i[0][0]+i[0][1]
        sum_list.append(sum)
        dif_list.append(i[0][0]-i[0][1])

    id_lb = np.argsort(np.array(sum_list))
    id_lb2 = np.argsort(np.array(dif_list))
    lu_id , rd_id = id_lb[0] , id_lb[-1]
    ld_id , ru_id = id_lb2[0] , id_lb2[-1]

    points = np.array([contours[sy][lu_id][0],contours[sy][rd_id][0],contours[sy][ld_id][0],contours[sy][ru_id][0]])

    return points , contours , sy

2、下面是使用方法2实现的顶点定位

def getpoints(binary: np.ndarray  , num: int ):
    # 搜索轮廓
    contours, hierarchy = cv2.findContours(
        binary,
        cv2.RETR_LIST,
        cv2.CHAIN_APPROX_SIMPLE)

    #按轮廓位置最左(x最小)选取
    x_list = []
    for i in contours:
        x_sum = 0
        for kk in i:
            x_sum += kk[0][0]
        x_av = x_sum/len(i)
        x_list.append(x_av)

    sy = np.argsort(np.array(x_list))[num]
    cnt = contours[sy]
    
    #找轮廓最小矩
    rect = cv2.minAreaRect(cnt)
    box = cv2.boxPoints(rect)

    return box , contours , sy

def findpoints(points):
    #区分矩形顶点位置
    point_y=sorted(points,key=lambda t:t[1])
    lu, ru =sorted(point_y[:2],key=lambda t:t[0])
    ld, rd =sorted(point_y[2:],key=lambda t:t[0])

    return [list(lu), list(ld), list(ru),list(rd)]

3、下面是一些展示代码

#展示顶点
def show_points(img , points):
    point_size = 8
    point_color = (0, 0, 255) # BGR
    thickness = 4 # 可以为 0 、4、8
    points_list = [tuple(i) for i in np.int32(points).reshape(-1,2)]
    for point in points_list:
        cv2.circle(img, point, point_size, point_color, thickness)
    img = cv2.resize(img,(808,808))
    cv2.imshow('img',img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    # cv2.imwrite('dd.jpg',img)

#展示轮廓
def show_Contour(img , contours , sy):
    cv2.drawContours(img, contours , sy , (25, 254, 0), 4)
    img = cv2.resize(img,(808,808))
    cv2.imshow('img',img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    # cv2.imwrite('mm.jpg',img)

到此这篇关于opencv矩形轮廓顶点的具体位置确定的两种实现方法的文章就介绍到这了,更多相关opencv矩形轮廓顶点内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家! 

相关文章

  • Python使用Selenium进行元素定位的步骤和方法

    Python使用Selenium进行元素定位的步骤和方法

    在使用Selenium进行网页自动化测试时,正确且高效地定位目标元素是至关重要的,以下是详细的步骤和方法,帮助你全面掌握如何使用Selenium进行元素定位,需要的朋友可以参考下
    2025-06-06
  • 详解Python脚本如何消费多个Kafka topic

    详解Python脚本如何消费多个Kafka topic

    kafka-python库是一个流行的Kafka客户端库,本文主要为大家详细介绍了如何通过这个库创建一个Kafka消费者,并同时消费多个Kafka topic,需要的可以了解下
    2024-11-11
  • Pycharm创建python文件自动添加日期作者等信息(步骤详解)

    Pycharm创建python文件自动添加日期作者等信息(步骤详解)

    这篇文章主要介绍了Pycharm创建python文件自动添加日期作者等信息(步骤详解),本文分步骤给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-02-02
  • Python实现图的广度和深度优先路径搜索算法

    Python实现图的广度和深度优先路径搜索算法

    图是一种抽象数据结构,本质和树结构是一样的。图与树相比较,图具有封闭性,可以把树结构看成是图结构的前生。本文将利用Python实现图的广度和深度优先路径搜索算法,感兴趣的可以学习一下
    2022-04-04
  • 关于Python去除字符串中空格的方法总结

    关于Python去除字符串中空格的方法总结

    用Python处理字符串时会经常要去掉字符串首、尾或者中间的空白,以得到我们想要的结果,下面这篇文章主要给大家介绍了关于Python去除字符串中空格的相关资料,需要的朋友可以参考下
    2022-12-12
  • Python 异步之如何保护任务免于取消详解

    Python 异步之如何保护任务免于取消详解

    这篇文章主要为大家介绍了Python 异步之如何保护任务免于取消示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-03-03
  • Pandas数据分析多文件批次聚合处理实例解析

    Pandas数据分析多文件批次聚合处理实例解析

    这篇文章主要为大家介绍了Pandas数据分析多文件批次聚合处理实例解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-02-02
  • Django基础CBV装饰器和中间件的应用示例

    Django基础CBV装饰器和中间件的应用示例

    这篇文章主要为大家介绍了Django基础CBV装饰器和中间件的应用示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-03-03
  • python编码问题汇总

    python编码问题汇总

    这篇文章主要给大家分享的是python编码问题汇总,字符编码简单介绍和发展史及使用方法的一些介绍,文章内容详细,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-03-03
  • jupyter notebook清除输出方式

    jupyter notebook清除输出方式

    这篇文章主要介绍了jupyter notebook清除输出方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04

最新评论