Java编程实现高斯模糊和图像的空间卷积详解

 更新时间:2017年11月25日 14:52:10   作者:fengzhizi715  
这篇文章主要介绍了Java编程实现高斯模糊和图像的空间卷积详解,具有一定参考价值,需要的朋友可以了解下。

高斯模糊

高斯模糊(英语:Gaussian Blur),也叫高斯平滑,是在Adobe Photoshop、GIMP以及Paint.NET等图像处理软件中广泛使用的处理效果,通常用它来减少图像杂讯以及降低细节层次。这种模糊技术生成的图像,其视觉效果就像是经过一个半透明屏幕在观察图像,这与镜头焦外成像效果散景以及普通照明阴影中的效果都明显不同。高斯平滑也用于计算机视觉算法中的预先处理阶段,以增强图像在不同比例大小下的图像效果。 从数学的角度来看,图像的高斯模糊过程就是图像与正态分布做卷积。由于正态分布又叫作高斯分布,所以这项技术就叫作高斯模糊。图像与圆形方框模糊做卷积将会生成更加精确的焦外成像效果。由于高斯函数的傅立叶变换是另外一个高斯函数,所以高斯模糊对于图像来说就是一个低通滤波器。

高斯模糊运用了高斯的正态分布的密度函数,计算图像中每个像素的变换。

根据一维高斯函数,可以推导得到二维高斯函数:

其中r是模糊半径,r^2 = x^2 + y^2,σ是正态分布的标准偏差。在二维空间中,这个公式生成的曲面的等高线是从中心开始呈正态分布的同心圆。分布不为零的像素组成的卷积矩阵与原始图像做变换。每个像素的值都是周围相邻像素值的加权平均。原始像素的值有最大的高斯分布值,所以有最大的权重,相邻像素随着距离原始像素越来越远,其权重也越来越小。这样进行模糊处理比其它的均衡模糊滤波器更高地保留了边缘效果。

其实,在iOS上实现高斯模糊是件很容易的事儿。早在iOS 5.0就有了Core Image的API,而且在CoreImage.framework库中,提供了大量的滤镜实现。

+(UIImage *)coreBlurImage:(UIImage *)image withBlurNumber:(CGFloat)blur 
{ 
  CIContext *context = [CIContext contextWithOptions:nil]; 
  CIImage *inputImage= [CIImage imageWithCGImage:image.CGImage]; 
  //设置filter
  CIFilter *filter = [CIFilter filterWithName:@"CIGaussianBlur"]; 
  [filter setValue:inputImage forKey:kCIInputImageKey]; [filter setValue:@(blur) forKey: @"inputRadius"]; 
  //模糊图片
  CIImage *result=[filter valueForKey:kCIOutputImageKey]; 
  CGImageRef outImage=[context createCGImage:result fromRect:[result extent]];    
  UIImage *blurImage=[UIImage imageWithCGImage:outImage];      
  CGImageRelease(outImage); 
  return blurImage;
}

在Android上实现高斯模糊也可以使用原生的API—–RenderScript,不过需要Android的API是17以上,也就是Android 4.2版本。

/**
   * 使用RenderScript实现高斯模糊的算法
   * @param bitmap
   * @return
   */
public Bitmap blur(Bitmap bitmap){
	//Let's create an empty bitmap with the same size of the bitmap we want to blur
	Bitmap outBitmap = Bitmap.createBitmap(bitmap.getWidth(), bitmap.getHeight(), Bitmap.Config.ARGB_8888);
	//Instantiate a new Renderscript
	RenderScript rs = RenderScript.create(getApplicationContext());
	//Create an Intrinsic Blur Script using the Renderscript
	ScriptIntrinsicBlur blurScript = ScriptIntrinsicBlur.create(rs, Element.U8_4(rs));
	//Create the Allocations (in/out) with the Renderscript and the in/out bitmaps
	Allocation allIn = Allocation.createFromBitmap(rs, bitmap);
	Allocation allOut = Allocation.createFromBitmap(rs, outBitmap);
	//Set the radius of the blur: 0 < radius <= 25
	blurScript.setRadius(20.0f);
	//Perform the Renderscript
	blurScript.setInput(allIn);
	blurScript.forEach(allOut);
	//Copy the final bitmap created by the out Allocation to the outBitmap
	allOut.copyTo(outBitmap);
	//recycle the original bitmap
	bitmap.recycle();
	//After finishing everything, we destroy the Renderscript.
	rs.destroy();
	return outBitmap;
}

我们开发的图像框架cv4j也提供了一个滤镜来实现高斯模糊。

GaussianBlurFilter filter = new GaussianBlurFilter();
filter.setSigma(10);

RxImageData.bitmap(bitmap).addFilter(filter).into(image2);

可以看出,cv4j实现的高斯模糊跟RenderScript实现的效果一致。

其中,GaussianBlurFilter的代码如下:

public class GaussianBlurFilter implements CommonFilter {
	private float[] kernel;
	private double sigma = 2;
	ExecutorService mExecutor;
	CompletionService<Void> service;
	public GaussianBlurFilter() {
		kernel = new float[0];
	}
	public void setSigma(double a) {
		this.sigma = a;
	}
	@Override
	  public ImageProcessor filter(final ImageProcessor src){
		final int width = src.getWidth();
		final int height = src.getHeight();
		final int size = width*height;
		int dims = src.getChannels();
		makeGaussianKernel(sigma, 0.002, (int)Math.min(width, height));
		mExecutor = TaskUtils.newFixedThreadPool("cv4j",dims);
		service = new ExecutorCompletionService<>(mExecutor);
		// save result
		for (int i=0; i<dims; i++) {
			final int temp = i;
			service.submit(new Callable<Void>() {
				public Void call() throws Exception {
					byte[] inPixels = src.tobyte(temp);
					byte[] temp = new byte[size];
					blur(inPixels, temp, width, height);
					// H Gaussian
					blur(temp, inPixels, height, width);
					// V Gaussain
					return null;
				}
			}
			);
		}
		for (int i = 0; i < dims; i++) {
			try {
				service.take();
			}
			catch (InterruptedException e) {
				e.printStackTrace();
			}
		}
		mExecutor.shutdown();
		return src;
	}
	/**
   * <p> here is 1D Gaussian    , </p>
   *
   * @param inPixels
   * @param outPixels
   * @param width
   * @param height
   */
	private void blur(byte[] inPixels, byte[] outPixels, int width, int height)
	  {
		int subCol = 0;
		int index = 0, index2 = 0;
		float sum = 0;
		int k = kernel.length-1;
		for (int row=0; row<height; row++) {
			int c = 0;
			index = row;
			for (int col=0; col<width; col++) {
				sum = 0;
				for (int m = -k; m< kernel.length; m++) {
					subCol = col + m;
					if(subCol < 0 || subCol >= width) {
						subCol = 0;
					}
					index2 = row * width + subCol;
					c = inPixels[index2] & 0xff;
					sum += c * kernel[Math.abs(m)];
				}
				outPixels[index] = (byte)Tools.clamp(sum);
				index += height;
			}
		}
	}
	public void makeGaussianKernel(final double sigma, final double accuracy, int maxRadius) {
		int kRadius = (int)Math.ceil(sigma*Math.sqrt(-2*Math.log(accuracy)))+1;
		if (maxRadius < 50) maxRadius = 50;
		// too small maxRadius would result in inaccurate sum.
		if (kRadius > maxRadius) kRadius = maxRadius;
		kernel = new float[kRadius];
		for (int i=0; i<kRadius; i++)        // Gaussian function
		kernel[i] = (float)(Math.exp(-0.5*i*i/sigma/sigma));
		double sum;
		// sum over all kernel elements for normalization
		if (kRadius < maxRadius) {
			sum = kernel[0];
			for (int i=1; i<kRadius; i++)
			        sum += 2*kernel[i];
		} else
		      sum = sigma * Math.sqrt(2*Math.PI);
		for (int i=0; i<kRadius; i++) {
			double v = (kernel[i]/sum);
			kernel[i] = (float)v;
		}
		return;
	}
}

空间卷积

二维卷积在图像处理中会经常遇到,图像处理中用到的大多是二维卷积的离散形式。

以下是cv4j实现的各种卷积效果。

cv4j 目前支持如下的空间卷积滤镜

filter 名称 作用
ConvolutionHVFilter 卷积 模糊或者降噪
MinMaxFilter 最大最小值滤波 去噪声
SAPNoiseFilter 椒盐噪声 增加噪声
SharpFilter 锐化 增强
MedimaFilter 中值滤波 去噪声
LaplasFilter 拉普拉斯 提取边缘
FindEdgeFilter 寻找边缘 梯度提取
SobelFilter 梯度 获取x、y方向的梯度提取
VarianceFilter 方差滤波 高通滤波
MaerOperatorFilter 马尔操作 高通滤波
USMFilter USM 增强

cv4j 是gloomyfish和我一起开发的图像处理库,目前还处于早期的版本。

目前已经实现的功能:

这周,我们对 cv4j 做了较大的调整,对整体架构进行了优化。还加上了空间卷积功能(图片增强、锐化、模糊等等)。接下来,我们会做二值图像的分析(腐蚀、膨胀、开闭操作、轮廓提取等等)

总结

以上就是本文关于Java编程实现高斯模糊和图像的空间卷积详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

70行Java代码实现深度神经网络算法分享

Java语言基于无向有权图实现克鲁斯卡尔算法代码示例

java算法实现红黑树完整代码示例

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

  • SpringBoot整合mybatis简单案例过程解析

    SpringBoot整合mybatis简单案例过程解析

    这篇文章主要介绍了SpringBoot整合mybatis简单案例过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-11-11
  • Spring Boot 自定义数据源DruidDataSource代码

    Spring Boot 自定义数据源DruidDataSource代码

    这篇文章主要介绍了Spring Boot 自定义数据源DruidDataSource代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-10-10
  • 解决idea 中 SpringBoot 点击运行没反应按钮成灰色的问题

    解决idea 中 SpringBoot 点击运行没反应按钮成灰色的问题

    在使用 Spring Boot 开发项目时,可能会遇到一个问题:点击运行按钮后,控制台没有任何输出,项目界面也没有显示,这种情况可能是由多种原因导致的,本文将介绍一些常见的解决方法,需要的朋友可以参考下
    2023-08-08
  • Mybatis-Plus环境配置与入门案例分析

    Mybatis-Plus环境配置与入门案例分析

    MyBatis-Plus 是一个 Mybatis 增强版工具,在 MyBatis 上扩充了其他功能没有改变其基本功能,为了简化开发提交效率而存在,本篇文章带你配置环境并认识它
    2022-03-03
  • 使用Java 8中的Lambda表达式实现工厂模式

    使用Java 8中的Lambda表达式实现工厂模式

    这篇文章主要给大家介绍了使用Java 8中的Lambda表达式实现工厂模式的相关资料,文中介绍的非常详细,对大家具有一定的参考价值,需要的朋友们下面来一起看看吧。
    2017-04-04
  • Mybatis plus中使用in查询出错如何解决

    Mybatis plus中使用in查询出错如何解决

    这篇文章主要介绍了Mybatis plus中使用in查询出错的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-08-08
  • Java中的类加载器_动力节点Java学院整理

    Java中的类加载器_动力节点Java学院整理

    这篇文章主要为大家详细介绍了Java中类加载器的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-06-06
  • 学习java多线程

    学习java多线程

    本文运用了大量的代码讲解了java多线程,它可以提高程序并行执行的速度,更快的响应程序。感兴趣的小伙伴一起来看看吧
    2021-08-08
  • spring自定义注解实现拦截器的实现方法

    spring自定义注解实现拦截器的实现方法

    本篇文章主要介绍了spring自定义注解实现拦截器的实现方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-08-08
  • java保留小数的四种实现方法

    java保留小数的四种实现方法

    这篇文章主要为大家详细介绍了java保留小数的四种实现方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2016-11-11

最新评论