Python实现的特征提取操作示例

 更新时间:2018年12月03日 08:44:27   作者:飘的心  
这篇文章主要介绍了Python实现的特征提取操作,涉及Python基于sklearn库的变量特征提取相关操作技巧,需要的朋友可以参考下

本文实例讲述了Python实现的特征提取操作。分享给大家供大家参考,具体如下:

# -*- coding: utf-8 -*-
"""
Created on Mon Aug 21 10:57:29 2017
@author: 飘的心
"""
#过滤式特征选择
#根据方差进行选择,方差越小,代表该属性识别能力很差,可以剔除
from sklearn.feature_selection import VarianceThreshold
x=[[100,1,2,3],
  [100,4,5,6],
  [100,7,8,9],
  [101,11,12,13]]
selector=VarianceThreshold(1) #方差阈值值,
selector.fit(x)
selector.variances_ #展现属性的方差
selector.transform(x)#进行特征选择
selector.get_support(True) #选择结果后,特征之前的索引
selector.inverse_transform(selector.transform(x)) #将特征选择后的结果还原成原始数据
                         #被剔除掉的数据,显示为0
#单变量特征选择
from sklearn.feature_selection import SelectKBest,f_classif
x=[[1,2,3,4,5],
  [5,4,3,2,1],
  [3,3,3,3,3],
  [1,1,1,1,1]]
y=[0,1,0,1]
selector=SelectKBest(score_func=f_classif,k=3)#选择3个特征,指标使用的是方差分析F值
selector.fit(x,y)
selector.scores_ #每一个特征的得分
selector.pvalues_
selector.get_support(True) #如果为true,则返回被选出的特征下标,如果选择False,则
              #返回的是一个布尔值组成的数组,该数组只是那些特征被选择
selector.transform(x)
#包裹时特征选择
from sklearn.feature_selection import RFE
from sklearn.svm import LinearSVC #选择svm作为评定算法
from sklearn.datasets import load_iris #加载数据集
iris=load_iris()
x=iris.data
y=iris.target
estimator=LinearSVC()
selector=RFE(estimator=estimator,n_features_to_select=2) #选择2个特征
selector.fit(x,y)
selector.n_features_  #给出被选出的特征的数量
selector.support_   #给出了被选择特征的mask
selector.ranking_   #特征排名,被选出特征的排名为1
#注意:特征提取对于预测性能的提升没有必然的联系,接下来进行比较;
from sklearn.feature_selection import RFE
from sklearn.svm import LinearSVC
from sklearn import cross_validation
from sklearn.datasets import load_iris
#加载数据
iris=load_iris()
X=iris.data
y=iris.target
#特征提取
estimator=LinearSVC()
selector=RFE(estimator=estimator,n_features_to_select=2)
X_t=selector.fit_transform(X,y)
#切分测试集与验证集
x_train,x_test,y_train,y_test=cross_validation.train_test_split(X,y,
                  test_size=0.25,random_state=0,stratify=y)
x_train_t,x_test_t,y_train_t,y_test_t=cross_validation.train_test_split(X_t,y,
                  test_size=0.25,random_state=0,stratify=y)
clf=LinearSVC()
clf_t=LinearSVC()
clf.fit(x_train,y_train)
clf_t.fit(x_train_t,y_train_t)
print('origin dataset test score:',clf.score(x_test,y_test))
#origin dataset test score: 0.973684210526
print('selected Dataset:test score:',clf_t.score(x_test_t,y_test_t))
#selected Dataset:test score: 0.947368421053
import numpy as np
from sklearn.feature_selection import RFECV
from sklearn.svm import LinearSVC
from sklearn.datasets import load_iris
iris=load_iris()
x=iris.data
y=iris.target
estimator=LinearSVC()
selector=RFECV(estimator=estimator,cv=3)
selector.fit(x,y)
selector.n_features_
selector.support_
selector.ranking_
selector.grid_scores_
#嵌入式特征选择
import numpy as np
from sklearn.feature_selection import SelectFromModel
from sklearn.svm import LinearSVC
from sklearn.datasets import load_digits
digits=load_digits()
x=digits.data
y=digits.target
estimator=LinearSVC(penalty='l1',dual=False)
selector=SelectFromModel(estimator=estimator,threshold='mean')
selector.fit(x,y)
selector.transform(x)
selector.threshold_
selector.get_support(indices=True)
#scikitlearn提供了Pipeline来讲多个学习器组成流水线,通常流水线的形式为:将数据标准化,
#--》特征提取的学习器————》执行预测的学习器,除了最后一个学习器之后,
#前面的所有学习器必须提供transform方法,该方法用于数据转化(如归一化、正则化、
#以及特征提取
#学习器流水线(pipeline)
from sklearn.svm import LinearSVC
from sklearn.datasets import load_digits
from sklearn import cross_validation
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
def test_Pipeline(data):
  x_train,x_test,y_train,y_test=data
  steps=[('linear_svm',LinearSVC(C=1,penalty='l1',dual=False)),
      ('logisticregression',LogisticRegression(C=1))]
  pipeline=Pipeline(steps)
  pipeline.fit(x_train,y_train)
  print('named steps',pipeline.named_steps)
  print('pipeline score',pipeline.score(x_test,y_test))
if __name__=='__main__':
  data=load_digits()
  x=data.data
  y=data.target
  test_Pipeline(cross_validation.train_test_split(x,y,test_size=0.25,
                  random_state=0,stratify=y))

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

  • Python中的lstrip()方法使用简介

    Python中的lstrip()方法使用简介

    这篇文章主要介绍了Python中的lstrip()方法使用简介,是Python入门的基础知识,需要的朋友可以参考下
    2015-05-05
  • Python使用struct库的用法小结

    Python使用struct库的用法小结

    struct模块执行Python值和以Python bytes表示的C结构体之间的转换,这可以用于处理存储在文件中或来自网络连接以及其他源的二进制数据,下面介绍下Python使用struct库的用法,感兴趣的朋友一起看看吧
    2022-05-05
  • python迭代器,生成器详解

    python迭代器,生成器详解

    这篇文章主要介绍了Python中的迭代器和生成器,涉及到Python中很多重要的特性,小编觉得这篇文章写的还不错,需要的朋友可以参考下
    2021-10-10
  • 详解在Python中使用Torchmoji将文本转换为表情符号

    详解在Python中使用Torchmoji将文本转换为表情符号

    这篇文章主要介绍了详解在Python中使用Torchmoji将文本转换为表情符号,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-07-07
  • Python实现正则表达式匹配任意的邮箱方法

    Python实现正则表达式匹配任意的邮箱方法

    今天小编就为大家分享一篇Python实现正则表达式匹配任意的邮箱方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • Python通过kerberos安全认证操作kafka方式

    Python通过kerberos安全认证操作kafka方式

    这篇文章主要介绍了Python通过kerberos安全认证操作kafka方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Python实现随机森林回归与各自变量重要性分析与排序

    Python实现随机森林回归与各自变量重要性分析与排序

    这篇文章主要为大家详细介绍了在Python环境中,实现随机森林(Random Forest,RF)回归与各自变量重要性分析与排序的过程,感兴趣的小伙伴可以了解一下
    2023-02-02
  • 如何用Python编写一个电子考勤系统

    如何用Python编写一个电子考勤系统

    这篇文章主要介绍了用Python编写一个电子考勤系统,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-02-02
  • 表格梳理解析python内置时间模块看完就懂

    表格梳理解析python内置时间模块看完就懂

    这篇文章主要介绍了python内置的时间模块,本文用表格方式清晰的对Python内置时间模块进行语法及用法的梳理解析,有需要的朋友建议收藏参考
    2021-10-10
  • python高手之路python处理excel文件(方法汇总)

    python高手之路python处理excel文件(方法汇总)

    用python来自动生成excel数据文件。python处理excel文件主要是第三方模块库xlrd、xlwt、xluntils和pyExcelerator,除此之外,python处理excel还可以用win32com和openpyxl模块
    2016-01-01

最新评论