Python基于Logistic回归建模计算某银行在降低贷款拖欠率的数据示例

 更新时间:2019年01月23日 10:33:50   作者:Sssssong12345  
这篇文章主要介绍了Python基于Logistic回归建模计算某银行在降低贷款拖欠率的数据,结合实例形式分析了Python基于逻辑回归模型的数值运算相关操作技巧,需要的朋友可以参考下

本文实例讲述了Python基于Logistic回归建模计算某银行在降低贷款拖欠率的数据。分享给大家供大家参考,具体如下:

一、Logistic回归模型:

 

二、Logistic回归建模步骤

1.根据分析目的设置指标变量(因变量和自变量),根据收集到的数据进行筛选

2.用ln(p/1-p)和自变量x1...xp列出线性回归方程,估计出模型中的回归系数

3.进行模型检验。模型有效性检验的函数有很多,比如正确率、混淆矩阵、ROC曲线、KS值

4.模型应用。

三、对某银行在降低贷款拖欠率的数据进行建模

源代码为:

import pandas as pd
filename=r'..\data\bankloan.xls' #导入数据路径
data=pd.read_excel(filename) #读取该excel文件
x=data.iloc[:,:8].as_matrix() #选取数据集中0-7行的数据,形成一个矩阵
y=data.iloc[:,8].as_matrix()
from sklearn.linear_model import LogisticRegression as LR
from sklearn.linear_model import RandomizedLogisticRegression as RLR
rlr=RLR()
rlr.fit(x,y) #训练模型
rlr.get_support() #获取特征筛选结果
print(u'通过逻辑回归模型筛选特征结束。')
print(u'有效特征为:%s'%','.join(data.columns[rlr.get_support()]))
x=data[data.columns[rlr.get_support()]].as_matrix() #筛选好的特征
lr=LR()
lr.fit(x,y)
print(u'逻辑回归模型训练结束')
print(u'模型的平均正确率:%s'%lr.score(x,y))

机器运行结果报错:

IndexError: boolean index did not match indexed array along dimension 0; dimension is 9 but corresponding boolean dimension is 8

解决办法:建立一个新的矩阵data2,去掉最后一行,使维数匹配。

修改后代码如下:

import pandas as pd
filename=r'..\data\bankloan.xls'
data=pd.read_excel(filename)
x=data.iloc[:,:8].as_matrix()
y=data.iloc[:,8].as_matrix()
from sklearn.linear_model import LogisticRegression as LR
from sklearn.linear_model import RandomizedLogisticRegression as RLR
rlr=RLR()
rlr.fit(x,y)
rlr.get_support()
print(u'通过逻辑回归模型筛选特征结束。')
data2=data.drop(u'违约',1)
print(u'有效特征为:%s'%','.join(data2.columns[rlr.get_support()]))
x=data[data2.columns[rlr.get_support()]].as_matrix()
lr=LR()
lr.fit(x,y)
print(u'逻辑回归模型训练结束')
print(u'模型的平均正确率:%s'%lr.score(x,y))

机器运行结果:

 

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

  • Python绘制正二十面体图形示例

    Python绘制正二十面体图形示例

    正二十面体由20个小的正三角形面组成,每个顶点周围有 5 个顶点,下面这篇文章主要给大家介绍了关于Python绘制正二十面体图形的相关资料,需要的朋友可以参考下
    2022-12-12
  • python 进阶学习之python装饰器小结

    python 进阶学习之python装饰器小结

    这篇文章主要介绍了python 进阶学习之python装饰器小结,本文通过场景分析给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09
  • Python的numpy选择特定行列的方法

    Python的numpy选择特定行列的方法

    这篇文章主要介绍了Python的numpy选择特定行列的方法,有时需要抽取矩阵中特定行的特定列,比如,需要抽取矩阵x的0,1行的0,3列,结果为矩阵域,需要的朋友可以参考下
    2023-08-08
  • python中的netCDF4批量处理NC文件的操作方法

    python中的netCDF4批量处理NC文件的操作方法

    这篇文章主要介绍了python的netCDF4批量处理NC格式文件的操作方法,使用python批量提取所有数据,查看数据属性,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-03-03
  • PyInstaller运行原理及常用操作详解

    PyInstaller运行原理及常用操作详解

    这篇文章主要介绍了PyInstaller运行原理及常用操作详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • django 通过url实现简单的权限控制的例子

    django 通过url实现简单的权限控制的例子

    今天小编就为大家分享一篇django 通过url实现简单的权限控制的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • python网络爬虫精解之Beautiful Soup的使用说明

    python网络爬虫精解之Beautiful Soup的使用说明

    简单来说,Beautiful Soup 是 python 的一个库,最主要的功能是从网页抓取数据,Beautiful Soup 提供一些简单的、python 式的函数用来处理导航、搜索、修改分析树等功能,需要的朋友可以参考下
    2021-09-09
  • python实现代码行数统计示例分享

    python实现代码行数统计示例分享

    这篇文章主要介绍了python实现代码行数统计的示例,需要的朋友可以参考下
    2014-02-02
  • python常用操作之使用多个界定符(分隔符)分割字符串的方法实例

    python常用操作之使用多个界定符(分隔符)分割字符串的方法实例

    在使用Python处理字符串的时候,有时候会需要分割字符,下面这篇文章主要给大家介绍了关于python常用操作之使用多个界定符(分隔符)分割字符串的相关资料,文中通过图文以及实例代码介绍的非常详细,需要的朋友可以参考下
    2023-01-01
  • 详解python中init方法和随机数方法

    详解python中init方法和随机数方法

    这篇文章主要介绍了python中init方法和随机数方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-03-03

最新评论