C++中各种可调用对象深入讲解

 更新时间:2019年02月15日 08:30:44   作者:悠悠  
这篇文章主要给大家介绍了关于C++中各种可调用对象的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧

概述

一组执行任务的语句都可以视为一个函数,一个可调用对象。在程序设计的过程中,我们习惯于把那些具有复用性的一组语句抽象为函数,把变化的部分抽象为函数的参数。

函数的使用能够极大的极少代码重复率,提高代码的灵活性。

C++中具有函数这种行为的方式有很多。就函数调用方式而言

func(param1, param2);

这儿使用func作为函数调用名,param1和param2为函数参数。在C++中就func的类型,可能为:

  • 普通函数
  • 类成员函数
  • 类静态函数
  • 仿函数
  • 函数指针
  • lambda表达式 C++11加入标准
  • std::function C++11加入标准

下面就这几种函数展开介绍

简单函数形式

普通函数

这种函数定义比较简单,一般声明在一个文件开头。如下:

#include <iostream>

// 普通函数声明和定义
int func_add(int a, int b) { return a + b; }

int main()
{
  int a = 10;
  int b = 20;
  int sum = func_add(a, b);
  std::cout << a << "+" << b << "is : " << sum << std::endl;
  getchar();
  return 0;
}

类成员函数

在一个类class中定义的函数一般称为类的方法,分为成员方法和静态方法,区别是成员方法的参数列表中隐含着类this指针。

#include <iostream>

class Calcu
{
public:
  int base = 20;
  // 类的成员方法,参数包含this指针
  int class_func_add(const int a, const int b) const { return this->base + a + b; };
  // 类的静态成员方法,不包含this指针
  static int class_static_func_add(const int a, const int b) { return a + b; };
};

int main(void) 
{
  Calcu obj;
  int a = 10;
  int b = 20;

  // 类普通成员方法调用如下
  obj.class_func_add(a, b);

  // 类静态成员方法调用如下
  obj.class_static_func_add(a, b);
  Calcu::class_static_func_add(a, b);

  getchar();
  return 0;
}

仿函数

仿函数是使用类来模拟函数调用行为,我们只要重载一个类的operator()方法,即可像调用一个函数一样调用类。这种方式用得比较少。

class ImitateAdd
{
public:
  int operator()(const int a, const int b) const { return a + b; };
};

int main()
{
  // 首先创建一个仿函数对象,然后调用()运算符模拟函数调用
  ImitateAdd imitate;
  imitate(5, 10);

  getchar();
  return 0;
}

函数指针

顾名思义,函数指针可以理解为指向函数的指针。可以将函数名赋值给相同类型的函数指针,通过调用函数指针实现调用函数。

函数指针是标准的C/C++的回调函数的使用解决方案,本身提供了很大的灵活性。

#include <iostream>

// 声明一个compute函数指针,函数参数为两个int型,返回值为int型
int (*compute)(int, int);

int max(int x, int y) { return x >= y ? x : y; }
int min(int x, int y) { return x <= y ? x : y; }
int add(int x, int y) { return x + y; }
int multiply(int x, int y) { return x * y; }

// 一个包含函数指针作为回调的函数
int compute_x_y(int x, int y, int(*compute)(int, int))
{
  // 调用回调函数
  return compute(x, y);
}

int main(void) 
{
  int x = 2; 
  int y = 5;
  std::cout << "max: " << compute_x_y(x, y, max) << std::endl; // max: 5
  std::cout << "min: " << compute_x_y(x, y, min) << std::endl; // min: 2
  std::cout << "add: " << compute_x_y(x, y, add) << std::endl; // add: 7
  std::cout << "multiply: " << compute_x_y(x, y, multiply) << std::endl; // multiply: 10

  // 无捕获的lambda可以转换为同类型的函数指针
  auto sum = [](int x, int y)->int{ return x + y; };
  std::cout << "sum: " << compute_x_y(x, y, sum) << std::endl; // sum: 7

  getchar();
  return 0;
}

Lambda函数

Lambda函数定义

Lambda函数,又可以称为Lambda表达式或者匿名函数,在C++11中加入标准。定义形式如下:

[captures] (params) -> return_type { statments;}

其中:

  • [captures]为捕获列表,用于捕获外层变量
  • (params)为匿名函数参数列表
  • ->return_type指定匿名函数返回值类型
  • { statments; }部分为函数体,包括一系列语句

需要注意:

  • 当匿名函数没有参数时,可以省略(params)部分
  • 当匿名函数体的返回值只有一个类型或者返回值为void时,可以省略->return_type部分
  • 定义匿名函数时,一般使用auto作为匿名函数类型

下面都是有效的匿名函数定义

auto func1 = [](int x, int y) -> int { return x + y; }; 
auto func2 = [](int x, int y) { return x > y; }; // 省略返回值类型
auto func3 = [] { global_ip = 0; }; // 省略参数部分

Lambda函数捕获列表

为了能够在Lambda函数中使用外部作用域中的变量,需要在[]中指定使用哪些变量。

下面是各种捕获选项:

  • [] 不捕获任何变量
  • [&] 捕获外部作用域中所有变量,并作为引用在匿名函数体中使用
  • [=] 捕获外部作用域中所有变量,并拷贝一份在匿名函数体中使用
  • [x, &y] x按值捕获, y按引用捕获
  • [&, x] x按值捕获. 其它变量按引用捕获
  • [=, &y] y按引用捕获. 其它变量按值捕获
  • [this] 捕获当前类中的this指针,如果已经使用了&或者=就默认添加此选项

只有lambda函数没有指定任何捕获时,才可以显式转换成一个具有相同声明形式函数指针

auto lambda_func_sum = [](int x, int y) { return x + y; }; // 定义lambda函数
void (*func_ptr)(int, int) = lambda_func_sum; // 将lambda函数赋值给函数指针
func_ptr(10, 20); // 调用函数指针

std::function函数包装

std::function定义

std::function在C++11后加入标准,可以用它来描述C++中所有可调用实体,它是是可调用对象的包装器,声明如下:

#include <functional>

// 声明一个返回值为int,参数为两个int的可调用对象类型
std::function<int(int, int)> Func;

使用之前需要导入<functional>库,并且通过std命名空间使用。

其他函数实体转化为std::function

std::function强大的地方在于,它能够兼容所有具有相同参数类型的函数实体。

相比较于函数指针,std::function能兼容带捕获的lambda函数,而且对类成员函数提供支持。

#include <iostream>
#include <functional>

std::function<int(int, int)> SumFunction;

// 普通函数
int func_sum(int a, int b)
{
  return a + b;
}

class Calcu
{
public:
  int base = 20;
  // 类的成员方法,参数包含this指针
  int class_func_sum(const int a, const int b) const { return this->base + a + b; };
  // 类的静态成员方法,不包含this指针
  static int class_static_func_sum(const int a, const int b) { return a + b; };
};

// 仿函数
class ImitateAdd
{
public:
  int operator()(const int a, const int b) const { return a + b; };
};

// lambda函数
auto lambda_func_sum = [](int a, int b) -> int { return a + b; };

// 函数指针
int (*func_pointer)(int, int);

int main(void) 
{
  int x = 2; 
  int y = 5;

  // 普通函数
  SumFunction = func_sum;
  int sum = SumFunction(x, y);
  std::cout << "func_sum:" << sum << std::endl;

  // 类成员函数
  Calcu obj;
  SumFunction = std::bind(&Calcu::class_func_sum, obj, 
    std::placeholders::_1, std::placeholders::_2); // 绑定this对象
  sum = SumFunction(x, y);
  std::cout << "Calcu::class_func_sum:" << sum << std::endl;

  // 类静态函数
  SumFunction = Calcu::class_static_func_sum;
  sum = SumFunction(x, y);
  std::cout << "Calcu::class_static_func_sum:" << sum << std::endl;

  // lambda函数
  SumFunction = lambda_func_sum;
  sum = SumFunction(x, y);
  std::cout << "lambda_func_sum:" << sum << std::endl;

  // 带捕获的lambda函数
  int base = 10;
  auto lambda_func_with_capture_sum = [&base](int x, int y)->int { return x + y + base; };
  SumFunction = lambda_func_with_capture_sum;
  sum = SumFunction(x, y);
  std::cout << "lambda_func_with_capture_sum:" << sum << std::endl;

  // 仿函数
  ImitateAdd imitate;
  SumFunction = imitate;
  sum = SumFunction(x, y);
  std::cout << "imitate func:" << sum << std::endl;

  // 函数指针
  func_pointer = func_sum;
  SumFunction = func_pointer;
  sum = SumFunction(x, y);
  std::cout << "function pointer:" << sum << std::endl;

  getchar();
  return 0;
}

最后的输出如下:

func_sum:7
Calcu::class_func_sum:27
Calcu::class_static_func_sum:7
lambda_func_sum:7
lambda_func_with_capture_sum:17
imitate func:7
function pointer:7

其中需要注意对于类成员函数,因为类成员函数包含this指针参数,所以单独使用std::function是不够的,还需要结合使用std::bind函数绑定this指针以及参数列表。

std::bind参数绑定规则

在使用std::bind绑定类成员函数的时候需要注意绑定参数顺序:

// 承接上面的例子
SumFunction = std::bind(&Calcu::class_func_sum, obj, 
    std::placeholders::_1, std::placeholders::_2);
SumFunction(x, y);
  • 第一个参数为类成员函数名的引用(推荐使用引用)
  • 第二个参数为this指针上下文,即特定的对象实例
  • 之后的参数分别制定类成员函数的第1,2,3依次的参数值
  • 使用std::placeholders::_1表示使用调用过程的第1个参数作为成员函数参数
  • std::placeholders::_n表示调用时的第n个参数

看下面的例子:

// 绑定成员函数第一个参数为4,第二个参数为6
SumFunction = std::bind(&Calcu::class_func_sum, obj, 4, 6);
SumFunction(); // 值为 10

// 绑定成员函数第一个参数为调用时的第一个参数,第二个参数为10
SumFunction = std::bind(&Calcu::class_func_sum, obj, std::placeholders::_1, 10);
SumFunction(5); // 值为 15

// 绑定成员函数第一个参数为调用时的第二个参数,第一个参数为调用时的第二个参数
SumFunction = std::bind(&Calcu::class_func_sum, obj, std::placeholders::_2, std::placeholders::_1);
SumFunction(5, 10); // 值为 15

对于非类成员对象,一般直接赋值即可,会自动进行转换并绑定参数,当然也可以使用std::bind指定参数绑定行为;

#include <iostream>
#include <functional>

// 按照顺序输出x, y, x
void print_func(int x, int y, int z)
{
  std::cout << x << " " << y << " " << z << std::endl;
}
std::function<void(int, int, int)> Func;

int main()
{
  Func = std::bind(&print_func, 1, 2, 3);
  Func(4, 5, 6); // 输出: 1 2 3

  Func = std::bind(&print_func, std::placeholders::_2, std::placeholders::_1, 3);
  Func(1, 2, 7); // 输出: 2 1 3

  int n = 10;
  Func = std::bind(&print_func, std::placeholders::_1, std::placeholders::_1, n);
  Func(5, 6, 7); // 输出: 5 5 10

  getchar();
  return 0;
}

需要注意:就算是绑定的时候指定了默认参数,在调用的时候也需要指定相同的参数个数(虽然不会起作用),否则编译不通过。

关于回调函数

回调就是通过把函数等作为另外一个函数的参数的形式,在调用者层指定被调用者行为的方式。

通过上面的介绍,我们知道,可以使用函数指针,以及std::function作为函数参数类型,从而实现回调函数:

#include <iostream>
#include <functional>

std::function<int(int, int)> ComputeFunction;
int (*compute_pointer)(int, int);

int compute1(int x, int y, ComputeFunction func) {
  // do something
  return func(x, y);
}

int compute2(int x, int y, compute_pointer func)
{
  // do something
  return func(x, y);
}
// 调用方式参考上面关于函数指针和std::function的例子

以上两种方式,对于一般函数,简单lambda函数而言是等效的。

但是如果对于带有捕获的lambda函数,类成员函数,有特殊参数绑定需要的场景,则只能使用std::function。

其实还有很多其他的实现回调函数的方式,如下面的标准面向对象的实现:

#include <iostream>

// 定义标准的回调接口
class ComputeFunc
{
public:
  virtual int compute(int x, int y) const = 0;
};

// 实现回调接口
class ComputeAdd : public ComputeFunc
{
public:
  int compute(int x, int y) const override { return x + y; }
};

int compute3(int x, int y, const ComputeFunc& compute)
{
  // 调用接口方法
  return compute.compute(x, y);
}

// 调用方法如下
int main()
{
  ComputeAdd add_func; // 创建一个调用实例
  int sum = compute3(3, 4, add_func); // 传入调用实例
}

面向对象的方式更加灵活,因为这个回调的对象可以有很复杂的行为。

以上三种方法各有各的好处,根据你需要实现的功能的复杂性,扩展性和应用场景等决定使用。

另外,这些函数类型的参数可能为空,在调用之前,应该检查是否可以调用,如检查函数指针是否为空。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。

相关文章

  • C语言学习之指针知识总结

    C语言学习之指针知识总结

    想突破C语言的学习,对指针的掌握是非常重要的,本文为大家总结了C语言中指针的相关知识点,文中的示例代码讲解详细,感兴趣的可以学习一下
    2022-07-07
  • FFmpeg实现多线程编码并保存mp4文件

    FFmpeg实现多线程编码并保存mp4文件

    这篇文章主要为大家介绍了FFmpeg如何持续的从指定内存中读取原始数据,再将解码数据存入队列中,并通过单独的线程进行编码,最后保存为mp4文件,感兴趣的可以了解下
    2023-08-08
  • C++中对象的动态建立与释放详解及其作用介绍

    C++中对象的动态建立与释放详解及其作用介绍

    这篇文章主要介绍了C++中对象的动态建立与释放详解及其作用介绍,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09
  • 基于C语言EOF与getchar()的使用详解

    基于C语言EOF与getchar()的使用详解

    希望本文可以对初学C的朋友提供一点帮助,也希望能和其他朋友进行交流。其中理解不对的地方若能得到指正和建议,本人将不胜感激
    2013-05-05
  • C++结构体案例练习分享

    C++结构体案例练习分享

    这篇文章主要和大家分享几个C++ 结构体的案例练习,帮助大家更好的理解和学习c++,感兴趣的朋友可以了解下,希望能够给你带来帮助
    2022-04-04
  • C++11新增的包装器详解

    C++11新增的包装器详解

    由于函数调用可以使用函数名、函数指针、函数对象或有名称的lambda表达式,可调用类型太丰富导致模板的效率极低。包装器用于解决效率低的问题
    2022-08-08
  • 一篇文章带你了解C++中的异常

    一篇文章带你了解C++中的异常

    这篇文章主要为大家详细介绍了C++中的异常,使用数据库,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-02-02
  • OpenMP 共享内存的并行编程框架入门详解

    OpenMP 共享内存的并行编程框架入门详解

    这篇文章主要为大家介绍了OpenMP 共享内存的并行编程框架入门详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-11-11
  • C++中auto类型说明符详解(附易错实例)

    C++中auto类型说明符详解(附易错实例)

    这篇文章主要给大家介绍了关于C++中auto类型说明符的相关资料,文中还附易错实例,在C++11中引入了auto类型说明符,用它就能让编译器替我们去分析表达式所属的类型,需要的朋友可以参考下
    2023-07-07
  • C语言实现分治法实例

    C语言实现分治法实例

    这篇文章主要为大家详细介绍了C语言实现分治法的实例,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-08-08

最新评论