Unity实现粒子光效导出成png序列帧

 更新时间:2019年03月18日 08:37:59   作者:langresser  
这篇文章主要为大家详细介绍了Unity实现粒子光效导出成png序列帧,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文为大家分享了Unity实现粒子光效导出成png序列帧的具体代码,供大家参考,具体内容如下

这个功能并不是很实用,不过美术同学有这样的需求,那么就花了一点时间研究了下。

我们没有使用Unity的引擎,但是做特效的同学找了一批Unity的粒子特效,希望导出成png序列帧的形式,然后我们的游戏来使用。这个就相当于拿Unity做了特效编辑器的工作。这个并不是很“邪门”,因为用幻影粒子,或者3dmax,差不多也是这个思路,只不过那些软件提供了正规的导出功能,而Unity则没有。

先上代码

using UnityEngine;
using UnityEditor;
using System;
using System.IO;
using System.Collections;
using System.Collections.Generic;
 
public class ParticleExporter : MonoBehaviour
{
 // Default folder name where you want the animations to be output
 public string folder = "PNG_Animations";
 
 // Framerate at which you want to play the animation
 public int frameRate = 25;     // export frame rate 导出帧率,设置Time.captureFramerate会忽略真实时间,直接使用此帧率
 public float frameCount = 100;    // export frame count 导出帧的数目,100帧则相当于导出5秒钟的光效时间。由于导出每一帧的时间很长,所以导出时间会远远长于直观的光效播放时间
 public int screenWidth = 960;    // not use 暂时没用,希望可以直接设置屏幕的大小(即光效画布的大小)
 public int screenHeight = 640;
 public Vector3 cameraPosition = Vector3.zero;
 public Vector3 cameraRotation = Vector3.zero;
 
 private string realFolder = ""; // real folder where the output files will be
 private float originaltimescaleTime; // track the original time scale so we can freeze the animation between frames
 private float currentTime = 0;
 private bool over = false;
 private int currentIndex = 0;
 private Camera exportCamera; // camera for export 导出光效的摄像机,使用RenderTexture
 
 public void Start()
 {
  // set frame rate
  Time.captureFramerate = frameRate;
 
  // Create a folder that doesn't exist yet. Append number if necessary.
  realFolder = Path.Combine(folder, name);
 
  // Create the folder
  if (!Directory.Exists(realFolder)) {
   Directory.CreateDirectory(realFolder);
  }
 
  originaltimescaleTime = Time.timeScale;
 
  GameObject goCamera = Camera.main.gameObject;
  if (cameraPosition != Vector3.zero) {
   goCamera.transform.position = cameraPosition;
  }
 
  if (cameraRotation != Vector3.zero) {
   goCamera.transform.rotation = Quaternion.Euler(cameraRotation);
  }
 
  GameObject go = Instantiate(goCamera) as GameObject;
  exportCamera = go.GetComponent<Camera>();
 
  currentTime = 0;
 
  
 }
 
 void Update()
 {
  currentTime += Time.deltaTime;
  if (!over && currentIndex >= frameCount) {
   over = true;
   Cleanup();
   Debug.Log("Finish");
   return;
  }
 
  // 每帧截屏
  StartCoroutine(CaptureFrame());
 }
 
 void Cleanup()
 {
  DestroyImmediate(exportCamera);
  DestroyImmediate(gameObject);
 }
 
 IEnumerator CaptureFrame()
 {
  // Stop time
  Time.timeScale = 0;
  // Yield to next frame and then start the rendering
  // this is important, otherwise will have error
  yield return new WaitForEndOfFrame();
 
  string filename = String.Format("{0}/{1:D04}.png", realFolder, ++currentIndex);
  Debug.Log(filename);
 
  int width = Screen.width;
  int height = Screen.height;
 
  //Initialize and render textures
  RenderTexture blackCamRenderTexture = new RenderTexture(width, height, 24, RenderTextureFormat.ARGB32);
  RenderTexture whiteCamRenderTexture = new RenderTexture(width, height, 24, RenderTextureFormat.ARGB32);
 
  exportCamera.targetTexture = blackCamRenderTexture;
  exportCamera.backgroundColor = Color.black;
  exportCamera.Render();
  RenderTexture.active = blackCamRenderTexture;
  Texture2D texb = GetTex2D();
 
  //Now do it for Alpha Camera
  exportCamera.targetTexture = whiteCamRenderTexture;
  exportCamera.backgroundColor = Color.white;
  exportCamera.Render();
  RenderTexture.active = whiteCamRenderTexture;
  Texture2D texw = GetTex2D();
 
  // If we have both textures then create final output texture
  if (texw && texb) {
   Texture2D outputtex = new Texture2D(width, height, TextureFormat.ARGB32, false);
 
   // we need to check alpha ourselves,because particle use additive shader
   // Create Alpha from the difference between black and white camera renders
   for (int y = 0; y < outputtex.height; ++y) { // each row
    for (int x = 0; x < outputtex.width; ++x) { // each column
     float alpha;
     alpha = texw.GetPixel(x, y).r - texb.GetPixel(x, y).r;
     alpha = 1.0f - alpha;
     Color color;
     if (alpha == 0) {
      color = Color.clear;
     } else {
      color = texb.GetPixel(x, y);
     }
     color.a = alpha;
     outputtex.SetPixel(x, y, color);
    }
   }
 
 
   // Encode the resulting output texture to a byte array then write to the file
   byte[] pngShot = outputtex.EncodeToPNG();
   File.WriteAllBytes(filename, pngShot);
 
   // cleanup, otherwise will memory leak
   pngShot = null;
   RenderTexture.active = null;
   DestroyImmediate(outputtex);
   outputtex = null;
   DestroyImmediate(blackCamRenderTexture);
   blackCamRenderTexture = null;
   DestroyImmediate(whiteCamRenderTexture);
   whiteCamRenderTexture = null;
   DestroyImmediate(texb);
   texb = null;
   DestroyImmediate(texw);
   texb = null;
 
   System.GC.Collect();
 
   // Reset the time scale, then move on to the next frame.
   Time.timeScale = originaltimescaleTime;
  }
 }
 
 // Get the texture from the screen, render all or only half of the camera
 private Texture2D GetTex2D()
 {
  // Create a texture the size of the screen, RGB24 format
  int width = Screen.width;
  int height = Screen.height;
  Texture2D tex = new Texture2D(width, height, TextureFormat.ARGB32, false);
  // Read screen contents into the texture
  tex.ReadPixels(new Rect(0, 0, width, height), 0, 0);
  tex.Apply();
  return tex;
 }
}

这里对几个关键的知识点来做说明:

1、整体思路是这样的,Unity中调整好摄像机,正常播放特效,然后每帧截屏,保存成我们需要的png序列帧。这个不仅仅是特效可以这么用,其实模型也可以。比如我们需要同屏显示几百上千人,或者是无关紧要的怪物、场景物件等等,就可以使用这个导出成2d的序列帧,可以大大提高效率,使一些不可能的情况变为可能。

2、关于时间和帧率的控制。由于截屏所需要的时间远远大于帧间隔,所以光效如果是播放1秒,则导出时间可能超过一分钟。Time.captureFrameRate可以设置帧率,设置后则忽略真实时间,光效、模型会按照帧率的时间来播放。这个接口恰好就是用在视频录制上的。

3、光效画布控制。这个暂时没有找到好的方法,由于是全屏幕截屏,所以Game窗口的大小就是光效画布的大小。

4、通过调整摄像机的位置、旋转,控制光效的显示信息。

5、截屏函数就是GetTex2D()。这里面最主要的是ReadPixels函数。需要注意,CaptureFrame函数必须要以协程的方式运行,因为里面有一句yield return new WaitForEndOfFrame();如果没有这一句,会报一个错误,大概意思就是ReadPixels不在DrawFrame里面运行。

6、截屏时间消耗很大,所以需要在截屏开始使用Time.timeScale=0暂停时间运行,截屏后再恢复

7、注意截屏操作完成后清理各种资源,并进行GC。否则内存很有可能就不够用了,截100帧图片,内存很有可能就两三G了。

8、截屏的时候使用了两个RenderTexture,分别绘制白底和黑底的图片,然后根据这两张图片计算出alpha。如果不是光效其实可以不这么麻烦,直接把Camera的backgroundColor中的alpha设置为0就可以了。但是光效使用了特殊的shader,比如Additive,这里涉及到alpha blend。绘制光效时如果也这样设置的话,导出的图片没有任何东西。所以必须要有实色背景。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • C#使用oledb导出数据到excel的方法

    C#使用oledb导出数据到excel的方法

    这篇文章主要介绍了C#使用oledb导出数据到excel的方法,结合实例形式分析了C#操作oledb导出数据的相关技巧与注意事项,需要的朋友可以参考下
    2016-06-06
  • C#打包部署并把.net framework框架打到安装包的方法步骤

    C#打包部署并把.net framework框架打到安装包的方法步骤

    打包c#程序时,有时需要添加.net framework组件到安装包,本文就来介绍一下C#打包部署并把.net framework框架打到安装包的方法步骤,具有一定的参考价值,感兴趣的可以了解一下
    2023-10-10
  • C# Rx的主要接口深入理解

    C# Rx的主要接口深入理解

    这篇文章主要介绍了C# Rx的主要接口深入理解的相关资料,需要的朋友可以参考下
    2017-03-03
  • C#并行编程之信号量

    C#并行编程之信号量

    这篇文章介绍了C#并行编程之信号量,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-05-05
  • C#命令行编译器配置方法

    C#命令行编译器配置方法

    这篇文章主要介绍了C#命令行编译器配置方法,本文讲解了配置C#命令行编译器、配置其它.NET命令行工具、通过csc命令行编译器来编译C#文件实例等内容,需要的朋友可以参考下
    2015-06-06
  • c#简单工厂、工厂方法与抽象工厂的区别分析

    c#简单工厂、工厂方法与抽象工厂的区别分析

    看了网络上很多关于设计模式的方法,有的模式看起来相似,但本质还是区别很大的.像简单工厂,工厂方法和抽象工厂就有很明显的区别.
    2013-03-03
  • C#中多态、重载、重写区别分析

    C#中多态、重载、重写区别分析

    这篇文章主要介绍了C#中多态、重载、重写区别,采用实例较为通俗易懂的分析了多态、重载的重写的概念与用法,对于C#初学者有非常不错的借鉴价值,需要的朋友可以参考下
    2014-09-09
  • C#获取两个数的最大公约数和最小公倍数示例

    C#获取两个数的最大公约数和最小公倍数示例

    本文介绍了使用C#获取两个数的最大公约数和最小公倍数的示例,大家参考使用吧
    2014-01-01
  • C#启动和停止windows服务的实例代码

    C#启动和停止windows服务的实例代码

    这篇文章介绍了C#启动和停止windows服务的实例代码,有需要的朋友可以参考一下
    2013-09-09
  • LRU缓存替换策略及C#实现方法分享

    LRU缓存替换策略及C#实现方法分享

    LRU(Least Recently Used)缓存替换策略是一种常用的缓存管理策略,它根据数据最近被访问的时间来决定哪些数据应该被保留在缓存中。本文将介绍LRU缓存替换策略的原理和C#实现方法。
    2023-04-04

最新评论