Python实现的矩阵转置与矩阵相乘运算示例

 更新时间:2019年03月26日 11:19:11   作者:Johnny丶me  
这篇文章主要介绍了Python实现的矩阵转置与矩阵相乘运算,结合实例形式分析了Python针对矩阵进行转置与相乘运算的相关实现技巧与操作注意事项,需要的朋友可以参考下

本文实例讲述了Python实现的矩阵转置与矩阵相乘运算。分享给大家供大家参考,具体如下:

矩阵转置

方法一 :使用常规的思路

def transpose(M):
  # 初始化转置后的矩阵
  result = []
  # 获取转置前的行和列
  row, col = shape(M)
  # 先对列进行循环
  for i in range(col):
    # 外层循环的容器
    item = []
    # 在列循环的内部进行行的循环
    for index in range(row):
      item.append(M[index][i])
    result.append(item)
  return result

思路:矩阵的转置就是从行变成列, 列变成行

  • 先定义一个最终存放矩阵的容器
  • 先对列进行循环i,并定义一个临时数组用于存放数据,在每次列的循环内部,再次对行进行循环j,取第M[j][i]个元素存入一个临时数组中
  • 在每次列循环完毕,将临时数组存入最终数组中
  • 当列循环完毕, 最终数组就是矩阵的转置

方法二:使用zip解包

def transpose(M):
  # 直接使用zip解包成转置后的元组迭代器,再强转成list存入最终的list中
  return [list(row) for row in zip(*M)]

思路:

zip 解包后,返回一个将多个可迭代对象组合成一个元组序列的迭代器,正如:

my_zip = list(zip(['a', 'b', 'c'], [1, 2, 3]))
print(my_zip) # [('a', 1), ('b', 2), ('c', 3)]

在每次循环中将元组强转成list 并存入总list中

矩阵相乘

def matrixMultiply(A, B):
  # 获取A的行数和列数
  A_row, A_col = shape(A)
  # 获取B的行数和列数
  B_row, B_col = shape(B)
  # 不能运算情况的判断
  if(A_col != B_row):
    raise ValueError
  # 最终的矩阵
  result = []
  # zip 解包后是转置后的元组,强转成list, 存入result中
  BT = [list(row) for row in zip(*B)]
  # 开始做乘积运算
  for A_index in range(A_row):
    # 用于记录新矩阵的每行元素
    rowItem = []
    for B_index in range(len(BT)):
      # num 用于累加
      num = 0
      for Br in range(len(BT[B_index])):
        num += A[A_index][Br] * BT[B_index][Br]
      # 累加完成后,将数据存入新矩阵的行中
      rowItem.append(num)
    result.append(rowItem)
  return result

说明: A矩阵与B矩阵的乘法运算,最终得到新的矩阵X , 思路

  • 首先判断是否可以相乘:前提条件是A的列与B的行要相同
  • 我们可以画图理解:假如A是3行5列,B是5行2列,相乘结果是3行2列
  • 将B转置后是2行5列,我们称之为BT, 这样 A 和 BT 都是5列了
  • 则A的每行中的第 i 个元素 * BT每行中的第 i 个元素,相加构成新矩阵X的新行,循环A行,共3行,则新矩阵X就会逐步添加新行,待循环完毕,得到新矩阵X

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

  • Python multiprocessing 共享对象的示例代码

    Python multiprocessing 共享对象的示例代码

    在 Python 中使用 multiprocessing,一个新的进程可以独立运行并拥有自己的内存空间,下面通过示例代码讲解Python multiprocessing共享对象的相关知识,感兴趣的朋友跟随小编一起看看吧
    2023-07-07
  • pandas学习之txt与sql文件的基本操作指南

    pandas学习之txt与sql文件的基本操作指南

    Pandas是Python的第三方库,提供高性能易用的数据类型和分析工具,下面这篇文章主要给大家介绍了关于pandas学习之txt与sql文件的基本操作指南,需要的朋友可以参考下
    2021-08-08
  • 教你用python实现一个无界面的小型图书管理系统

    教你用python实现一个无界面的小型图书管理系统

    今天带大家学习怎么用python实现一个无界面的小型图书管理系统,文中有非常详细的图文解说及代码示例,对正在学习python的小伙伴们有很好地帮助,需要的朋友可以参考下
    2021-05-05
  • pandas修改DataFrame列名的实现方法

    pandas修改DataFrame列名的实现方法

    这篇文章主要介绍了pandas修改DataFrame列名的实现方法, 文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-02-02
  • python opencv检测直线 cv2.HoughLinesP的实现

    python opencv检测直线 cv2.HoughLinesP的实现

    cv2.HoughLines()函数是在二值图像中查找直线,本文结合示例详细的介绍了cv2.HoughLinesP的用法,感兴趣的可以了解一下
    2021-06-06
  • python logging重复记录日志问题的解决方法

    python logging重复记录日志问题的解决方法

    python的logging模块是python使用过程中打印日志的利器,下面这篇文章主要给大家介绍了关于python logging重复记录日志问题的解决方法,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
    2018-07-07
  • Python实现复制图片到指定文件夹并按顺序重新命名

    Python实现复制图片到指定文件夹并按顺序重新命名

    这篇文章主要为大家详细介绍了如何利用Python实现将360个文件夹里的照片,全部复制到指定的文件夹中,并且按照顺序重新命名,感兴趣的小伙伴可以了解一下
    2023-03-03
  • 详解python中absl包的使用

    详解python中absl包的使用

    "absl" 是 Google 开发的一个 Python 软件包,用于提供一些常见的 Python 编程功能和工具,以改善代码的可读性、可维护性和性能,下面我们就来看看absl包的具体使用吧
    2023-11-11
  • Python Flask实现图片上传与下载的示例详解

    Python Flask实现图片上传与下载的示例详解

    这篇文章主要为大家详细介绍了如何利用Python和Flask实现图片上传与下载(支持漂亮的拖拽上传),文中示例代码讲解详细,感兴趣的可以了解一下
    2022-05-05
  • Python特殊属性property原理及使用方法解析

    Python特殊属性property原理及使用方法解析

    这篇文章主要介绍了Python特殊属性property原理及使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-10-10

最新评论