Opencv EigenFace人脸识别算法详解

 更新时间:2019年05月21日 08:33:10   作者:东城青年  
这篇文章主要为大家详细介绍了Opencv EigenFace人脸识别算法的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

简要:

EigenFace是基于PCA降维的人脸识别算法,PCA是使整体数据降维后的方差最大,没有考虑降维后类间的变化。 它是将图像每一个像素当作一维特征,然后用SVM或其它机器学习算法进行训练。但这样维数太多,根本无法计算。我这里用的是ORL人脸数据库,英国剑桥实验室拍摄的,有40位志愿者的人脸,在不同表情不同光照下每位志愿者拍摄10张,共有400张图片,大小为112*92,所以如果把每个像素当做特征拿来训练的话,一张人脸就有10304维特征,这么高维的数据根本无法处理。所以需要先对数据进行降维,去掉一些冗余的特征。

第一步:将ORL人脸图片的地址统一放在一个文件里,等会通过对该文件操作,将图片全部加载进来。

//ofstream一般对文件进行读写操作,ifstream一般对文件进行读操作
ofstream file;
 file.open("path.txt");//新建并打开文件
 char str[50] = {};
 for (int i = 1; i <= 40; i++) {
 for (int j = 1; j <= 10; j++) { 
  sprintf_s(str, "orl_faces/s%d/%d.pgm;%d", i, j, i);//将数字转换成字符
  file << str << endl;//写入
 } 
 }

得到路劲文件如下图所示:

 第二步:读入模型需要输入的数据,即用来训练的图像vector<Mat>images和标签vector<int>labels

string filename = string("path.txt");
 ifstream file(filename);
 if (!file) { 
    printf("could not load file"); 
  }
 vector<Mat>images;
 vector<int>labels;
 char separator = ';';
 string line,path, classlabel;
 while (getline(file,line)) {
 stringstream lines(line);
 getline(lines, path, separator);
 getline(lines, classlabel);
 images.push_back(imread(path, 0));
 labels.push_back(atoi(classlabel.c_str()));//atoi(ASCLL to int)将字符串转换为整数型
 }

第三步:加载、训练、预测模型

Ptr<BasicFaceRecognizer> model = EigenFaceRecognizer::create();
 model->train(images, labels);
 int predictedLabel = model->predict(testSample);
 printf("actual label:%d,predict label :%d\n", testLabel, predictedLabel);

补充:

1、显示平均脸

//计算特征值特征向量及平均值
 Mat vals = model->getEigenValues();//89*1
 printf("%d,%d\n", vals.rows, vals.cols);
 Mat vecs = model->getEigenVectors();//10324*89
 printf("%d,%d\n", vecs.rows, vecs.cols);
 Mat mean = model->getMean();//1*10304
 printf("%d,%d\n", mean.rows, mean.cols);
 
 //显示平均脸
 Mat meanFace = mean.reshape(1, height);//第一个参数为通道数,第二个参数为多少行
 normalize(meanFace, meanFace, 0, 255, NORM_MINMAX, CV_8UC1);
 imshow("Mean Face", meanFace);

2、显示前部分特征脸

//显示特征脸
 for (int i = 0; i<min(10, vals.rows); i++) {
 Mat feature_vec = vecs.col(i).clone();
 Mat feature_face= feature_vec.reshape(1, height); 
 normalize(feature_face, feature_face, 0, 255, NORM_MINMAX, CV_8UC1); 
 Mat colorface;
 applyColorMap(feature_face, colorface, COLORMAP_BONE);
 
 sprintf_s(win_title, "eigenface%d", i);
 imshow(win_title, colorface);
 }

3、对第一张人脸在特征向量空间进行人脸重建(分别基于前10,20,30,40,50,60个特征向量进行人脸重建)

//重建人脸
 for (int i = min(10, vals.rows); i <min(61, vals.rows); i+=10) {
 Mat vecs_space = Mat(vecs, Range::all(), Range(0, i));
 Mat projection = LDA::subspaceProject(vecs_space, mean, images[0].reshape(1, 1));//投影到子空间
 Mat reconstruction = LDA::subspaceReconstruct(vecs_space, mean, projection);//重建
 Mat result = reconstruction.reshape(1, height);
 normalize(result, result, 0, 255, NORM_MINMAX, CV_8UC1);
 //char wintitle[40] = {};
 sprintf_s(win_title, "recon face %d", i);
 imshow(win_title, result);
 }

完整代码如下:

#include<opencv2\opencv.hpp>
#include<opencv2\face.hpp>
using namespace cv;
using namespace face;
using namespace std;
char win_title[40] = {};
 
int main(int arc, char** argv) { 
 namedWindow("input",CV_WINDOW_AUTOSIZE);
 
 //读入模型需要输入的数据,用来训练的图像vector<Mat>images和标签vector<int>labels
 string filename = string("path.txt");
 ifstream file(filename);
 if (!file) { printf("could not load file"); }
 vector<Mat>images;
 vector<int>labels;
 char separator = ';';
 string line,path, classlabel;
 while (getline(file,line)) {
 stringstream lines(line);
 getline(lines, path, separator);
 getline(lines, classlabel);
 //printf("%d\n", atoi(classlabel.c_str()));
 images.push_back(imread(path, 0));
 labels.push_back(atoi(classlabel.c_str()));//atoi(ASCLL to int)将字符串转换为整数型
 }
 int height = images[0].rows;
 int width = images[0].cols;
 printf("height:%d,width:%d\n", height, width);
 //将最后一个样本作为测试样本
 Mat testSample = images[images.size() - 1];
 int testLabel = labels[labels.size() - 1];
 //删除列表末尾的元素
 images.pop_back();
 labels.pop_back();
 
 //加载,训练,预测
 Ptr<BasicFaceRecognizer> model = EigenFaceRecognizer::create();
 model->train(images, labels);
 int predictedLabel = model->predict(testSample);
 printf("actual label:%d,predict label :%d\n", testLabel, predictedLabel);
 
 //计算特征值特征向量及平均值
 Mat vals = model->getEigenValues();//89*1
 printf("%d,%d\n", vals.rows, vals.cols);
 Mat vecs = model->getEigenVectors();//10324*89
 printf("%d,%d\n", vecs.rows, vecs.cols);
 Mat mean = model->getMean();//1*10304
 printf("%d,%d\n", mean.rows, mean.cols);
 
 //显示平均脸
 Mat meanFace = mean.reshape(1, height);//第一个参数为通道数,第二个参数为多少行
 normalize(meanFace, meanFace, 0, 255, NORM_MINMAX, CV_8UC1);
 imshow("Mean Face", meanFace);
 
 //显示特征脸
 for (int i = 0; i<min(10, vals.rows); i++) {
 Mat feature_vec = vecs.col(i).clone();
 Mat feature_face= feature_vec.reshape(1, height); 
 normalize(feature_face, feature_face, 0, 255, NORM_MINMAX, CV_8UC1); 
 Mat colorface;
 applyColorMap(feature_face, colorface, COLORMAP_BONE);
 
 sprintf_s(win_title, "eigenface%d", i);
 imshow(win_title, colorface);
 }
 
 //重建人脸
 for (int i = min(10, vals.rows); i <min(61, vals.rows); i+=10) {
 Mat vecs_space = Mat(vecs, Range::all(), Range(0, i));
 Mat projection = LDA::subspaceProject(vecs_space, mean, images[0].reshape(1, 1));
 Mat reconstruction = LDA::subspaceReconstruct(vecs_space, mean, projection);
 Mat result = reconstruction.reshape(1, height);
 normalize(result, result, 0, 255, NORM_MINMAX, CV_8UC1);
 //char wintitle[40] = {};
 sprintf_s(win_title, "recon face %d", i);
 imshow(win_title, result);
 }
 
 waitKey(0);
 return 0;
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • C到C++的升级关系及区别实例探究

    C到C++的升级关系及区别实例探究

    这篇文章主要为大家介绍了C到C++的升级关系及区别实例探究,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-01-01
  • C++中的并行与并发基础与使用详解

    C++中的并行与并发基础与使用详解

    对于多线程来说,这两个概念有很大部分是重叠的。对于很多人来说,它们的意思没有什么区别。其区别主要在于关注点和意图方面(差距甚微)。这两个词都是用来对硬件在同时执行多个任务的方式进行描述的术语,不过并行更加注重性能
    2023-02-02
  • C语言字符函数、内存函数功能及实现代码

    C语言字符函数、内存函数功能及实现代码

    这篇文章主要介绍了C语言字符函数、内存函数 功能及实现,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-02-02
  • VC++ 使用 _access函数判断文件或文件夹是否存在

    VC++ 使用 _access函数判断文件或文件夹是否存在

    这篇文章主要介绍了VC++ 使用 _access函数判断文件或文件夹是否存在的相关资料,需要的朋友可以参考下
    2015-10-10
  • 浅析C++内存布局

    浅析C++内存布局

    本文给大家介绍了C++内存布局的相关知识,通过进程间通信比线程间通信难也是因为进程间的用户空间是相互隔离的,无法相互访问,需要通过进程间通信方式通信,通过内核地址空间
    2021-10-10
  • C语言实现大学生考勤管理系统

    C语言实现大学生考勤管理系统

    这篇文章主要为大家详细介绍了C语言实现大学生考勤管理系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-12-12
  • Pthread并发编程之线程基本元素和状态的剖析

    Pthread并发编程之线程基本元素和状态的剖析

    本篇文章主要给大家介绍pthread并发编程当中关于线程的基础概念,并且深入剖析进程的相关属性和设置,以及线程在内存当中的布局形式,帮助大家深刻理解线程
    2022-11-11
  • C++ ReSharper2021激活码永久有效

    C++ ReSharper2021激活码永久有效

    ReSharperC++是为c/c++开发者打造的一款实用Visual Studio扩展插件,这款插件旨在提升开发者的效率,今天给大家分享这款软件的激活方法,需要C++ ReSharper2021激活码的朋友参考下本文
    2021-06-06
  • C++学习之如何进行内存资源管理

    C++学习之如何进行内存资源管理

    与java、golang等自带垃圾回收机制的语言不同,C++并不会自动回收内存,这往往会导致内存泄漏和内存溢出等问题,所以掌握C++中的内存管理技巧和工具是非常重要的,本文就来和大家详细讲讲
    2023-05-05
  • C++左值引用与指针的区别及说明

    C++左值引用与指针的区别及说明

    左值引用与指针的区别:左值引用是一个别名,只能绑定左值,对左值引用的访问与访问左值是相同的;指针是一个变量,该变量在内存中存在真是的物理地址,该变量内的存储的是一个内存地址,访问指针变量对应的内容需要配合解访问符*
    2025-03-03

最新评论