Python使用sklearn实现的各种回归算法示例

 更新时间:2019年07月04日 10:57:00   作者:Yeoman92  
这篇文章主要介绍了Python使用sklearn实现的各种回归算法,结合实例形式分析了Python使用sklearn库实现的决策树回归、线性回归、SVM回归、KNN回归、随机森林回归等各种回归算法,需要的朋友可以参考下

本文实例讲述了Python使用sklearn实现的各种回归算法。分享给大家供大家参考,具体如下:

使用sklearn做各种回归

基本回归:线性、决策树、SVM、KNN

集成方法:随机森林、Adaboost、GradientBoosting、Bagging、ExtraTrees

1. 数据准备

为了实验用,我自己写了一个二元函数,y=0.5*np.sin(x1)+ 0.5*np.cos(x2)+0.1*x1+3。其中x1的取值范围是0~50,x2的取值范围是-10~10,x1和x2的训练集一共有500个,测试集有100个。其中,在训练集的上加了一个-0.5~0.5的噪声。生成函数的代码如下:

def f(x1, x2):
  y = 0.5 * np.sin(x1) + 0.5 * np.cos(x2) + 0.1 * x1 + 3
  return y
def load_data():
  x1_train = np.linspace(0,50,500)
  x2_train = np.linspace(-10,10,500)
  data_train = np.array([[x1,x2,f(x1,x2) + (np.random.random(1)-0.5)] for x1,x2 in zip(x1_train, x2_train)])
  x1_test = np.linspace(0,50,100)+ 0.5 * np.random.random(100)
  x2_test = np.linspace(-10,10,100) + 0.02 * np.random.random(100)
  data_test = np.array([[x1,x2,f(x1,x2)] for x1,x2 in zip(x1_test, x2_test)])
  return data_train, data_test

其中训练集(y上加有-0.5~0.5的随机噪声)和测试集(没有噪声)的图像如下:

这里写图片描述

2. scikit-learn的简单使用

scikit-learn非常简单,只需实例化一个算法对象,然后调用fit()函数就可以了,fit之后,就可以使用predict()函数来预测了,然后可以使用score()函数来评估预测值和真实值的差异,函数返回一个得分。

完整程式化代码为:

import numpy as np
import matplotlib.pyplot as plt
###########1.数据生成部分##########
def f(x1, x2):
  y = 0.5 * np.sin(x1) + 0.5 * np.cos(x2) + 3 + 0.1 * x1
  return y
def load_data():
  x1_train = np.linspace(0,50,500)
  x2_train = np.linspace(-10,10,500)
  data_train = np.array([[x1,x2,f(x1,x2) + (np.random.random(1)-0.5)] for x1,x2 in zip(x1_train, x2_train)])
  x1_test = np.linspace(0,50,100)+ 0.5 * np.random.random(100)
  x2_test = np.linspace(-10,10,100) + 0.02 * np.random.random(100)
  data_test = np.array([[x1,x2,f(x1,x2)] for x1,x2 in zip(x1_test, x2_test)])
  return data_train, data_test
train, test = load_data()
x_train, y_train = train[:,:2], train[:,2] #数据前两列是x1,x2 第三列是y,这里的y有随机噪声
x_test ,y_test = test[:,:2], test[:,2] # 同上,不过这里的y没有噪声
###########2.回归部分##########
def try_different_method(model):
  model.fit(x_train,y_train)
  score = model.score(x_test, y_test)
  result = model.predict(x_test)
  plt.figure()
  plt.plot(np.arange(len(result)), y_test,'go-',label='true value')
  plt.plot(np.arange(len(result)),result,'ro-',label='predict value')
  plt.title('score: %f'%score)
  plt.legend()
  plt.show()
###########3.具体方法选择##########
####3.1决策树回归####
from sklearn import tree
model_DecisionTreeRegressor = tree.DecisionTreeRegressor()
####3.2线性回归####
from sklearn import linear_model
model_LinearRegression = linear_model.LinearRegression()
####3.3SVM回归####
from sklearn import svm
model_SVR = svm.SVR()
####3.4KNN回归####
from sklearn import neighbors
model_KNeighborsRegressor = neighbors.KNeighborsRegressor()
####3.5随机森林回归####
from sklearn import ensemble
model_RandomForestRegressor = ensemble.RandomForestRegressor(n_estimators=20)#这里使用20个决策树
####3.6Adaboost回归####
from sklearn import ensemble
model_AdaBoostRegressor = ensemble.AdaBoostRegressor(n_estimators=50)#这里使用50个决策树
####3.7GBRT回归####
from sklearn import ensemble
model_GradientBoostingRegressor = ensemble.GradientBoostingRegressor(n_estimators=100)#这里使用100个决策树
####3.8Bagging回归####
from sklearn.ensemble import BaggingRegressor
model_BaggingRegressor = BaggingRegressor()
####3.9ExtraTree极端随机树回归####
from sklearn.tree import ExtraTreeRegressor
model_ExtraTreeRegressor = ExtraTreeRegressor()
###########4.具体方法调用部分##########
try_different_method(model_DecisionTreeRegressor)

3.结果展示

决策树回归结果:
这里写图片描述

线性回归结果:
这里写图片描述

SVM回归结果:
这里写图片描述

KNN回归结果:
这里写图片描述

随机森林回归结果:
这里写图片描述

Adaboost回归结果:
这里写图片描述

GBRT回归结果:
这里写图片描述

Bagging回归结果:
这里写图片描述

极端随机树回归结果:
这里写图片描述

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

  • Python lxml解析HTML并用xpath获取元素的方法

    Python lxml解析HTML并用xpath获取元素的方法

    今天小编就为大家分享一篇Python lxml解析HTML并用xpath获取元素的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • scrapy 远程登录控制台的实现

    scrapy 远程登录控制台的实现

    本文主要介绍了scrapy 远程登录控制台的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • pandas如何快速去除列名中的特殊符号

    pandas如何快速去除列名中的特殊符号

    在使用Pandas处理数据时,经常需要处理数据中的列名column name,有时候,列名可能包含特殊字符,比如空格、点号、括号等,这些特殊字符可能会导致下一步的代码出错,因此需要将这些特殊字符从列名中删除,下面先介绍pandas如何去除列名中的特殊符号,感兴趣的朋友一起看看吧
    2024-01-01
  • Python实现Tab自动补全和历史命令管理的方法

    Python实现Tab自动补全和历史命令管理的方法

    这篇文章主要介绍了Python实现Tab自动补全和历史命令管理的方法,实例分析了tab自动补全的实现技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-03-03
  • python super函数使用方法详解

    python super函数使用方法详解

    这篇文章主要介绍了python super函数使用方法详解,需要的朋友可以参考下
    2020-02-02
  • Linux下编译安装MySQL-Python教程

    Linux下编译安装MySQL-Python教程

    这篇文章主要介绍了Linux下编译安装MySQL-Python教程,本文使用编译方式安装,提供下载地址和测试安装成功方法,需要的朋友可以参考下
    2015-02-02
  • Python基础之Socket通信原理

    Python基础之Socket通信原理

    这篇文章主要介绍了Python基础之Socket通信原理,文中有非常详细的代码示例,对正在学习python基础的小伙伴们有非常好的帮助,需要的朋友可以参考下
    2021-04-04
  • 安装Python的web.py框架并从hello world开始编程

    安装Python的web.py框架并从hello world开始编程

    这篇文章主要介绍了安装Python的web.py框架并从hello world开始编程,web.py的作者年轻的Aaron Swartz已经离世,缅怀大神,需要的朋友可以参考下
    2015-04-04
  • python爬虫 使用真实浏览器打开网页的两种方法总结

    python爬虫 使用真实浏览器打开网页的两种方法总结

    下面小编就为大家分享一篇python爬虫 使用真实浏览器打开网页的两种方法总结,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • Python中用max()方法求最大值的介绍

    Python中用max()方法求最大值的介绍

    这篇文章主要介绍了Python中用max()方法求最大值的介绍,是Python入门中的基础知识,需要的朋友可以参考下
    2015-05-05

最新评论