python数据预处理之数据标准化的几种处理方式

 更新时间:2019年07月17日 11:20:28   作者:泛泛之素  
这篇文章主要介绍了python数据预处理之数据标准化的几种处理方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

何为标准化:

在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果。数据无量纲化处理主要解决数据的可比性。

几种标准化方法:

归一化Max-Min

min-max标准化方法是对原始数据进行线性变换。设minA和maxA分别为属性A的最小值和最大值,将A的一个原始值x通过min-max标准化映射成在区间[0,1]中的值x',其公式为:

新数据=(原数据-最小值)/(最大值-最小值)

这种方法能使数据归一化到一个区域内,同时不改变原来的数据结构。

实现中心化Z-Score

这种方法基于原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。将A的原始值x使用z-score标准化到x'。

z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。

新数据=(原数据-均值)/标准差

这种方法适合大多数类型数据,也是很多工具的默认标准化方法。标准化之后的数据是以0为均值,方差为以的正太分布。但是Z-Score方法是一种中心化方法,会改变原有数据的分布结构,不适合用于对稀疏数据做处理。

很多时候数据集会存在稀疏特征,表现为标准差小,很多元素值为0,最常见的稀疏数据集是用来做协同过滤的数据集,绝大部分数据都是0。对稀疏数据做标准化,不能采用中心化的方式,否则会破坏稀疏数据的结构。

用于稀疏数据的MaxAbs

最大值绝对值标准化(MaxAbs)即根据最大值的绝对值进行标准化,假设原转换的数据为x,新数据为x',那么x'=x/|max|,其中max为x锁在列的最大值。

该方法的数据区间为[-1, 1],也不破坏原数据结构的特点,因此也可以用于稀疏数据,一些稀疏矩阵。

针对离群点的RobustScaler

有些时候,数据集中存在离群点,用Z-Score进行标准化,但是结果不理想,因为离群点在标准化后丧失了利群特性。RobustScaler针对离群点做标准化处理,该方法对数据中心化的数据的缩放健壮性有更强的参数控制能力。

python实现

import numpy as np
import pandas as pd
from sklearn import preprocessing
import matplotlib.pyplot as plt
from sklearn.datasets import make_moons
import matplotlib.pyplot as plt
%matplotlib inline

# 导入数据
data = make_moons(n_samples=200, noise=10)[0]

#Z-Score标准化
#建立StandardScaler对象
zscore = preprocessing.StandardScaler()
# 标准化处理
data_zs = zscore.fit_transform(data)

#Max-Min标准化
#建立MinMaxScaler对象
minmax = preprocessing.MinMaxScaler()
# 标准化处理
data_minmax = minmax.fit_transform(data)

#MaxAbs标准化
#建立MinMaxScaler对象
maxabs = preprocessing.MaxAbsScaler()
# 标准化处理
data_maxabs = maxabs.fit_transform(data)

#RobustScaler标准化
#建立RobustScaler对象
robust = preprocessing.RobustScaler()
# 标准化处理
data_rob = robust.fit_transform(data)

# 可视化数据展示
# 建立数据集列表
data_list = [data, data_zs, data_minmax, data_maxabs, data_rob]
# 创建颜色列表
color_list = ['blue', 'red', 'green', 'black', 'pink']
# 创建标题样式
title_list = ['source data', 'zscore', 'minmax', 'maxabs', 'robust']

# 设置画幅
plt.figure(figsize=(9, 6))
# 循环数据集和索引
for i, dt in enumerate(data_list):
  # 子网格
  plt.subplot(2, 3, i+1)
  # 数据画散点图
  plt.scatter(dt[:, 0], dt[:, 1], c=color_list[i])
  # 设置标题
  plt.title(title_list[i])
# 图片储存 
plt.savefig('xx.png')
# 图片展示
plt.show()

参考:
python数据分析与数据化运营》 宋天龙

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Tensorflow实现卷积神经网络用于人脸关键点识别

    Tensorflow实现卷积神经网络用于人脸关键点识别

    这篇文章主要介绍了Tensorflow实现卷积神经网络用于人脸关键点识别,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-03-03
  • python 添加用户设置密码并发邮件给root用户

    python 添加用户设置密码并发邮件给root用户

    这篇文章主要介绍了python 添加用户设置密码并发邮件给root用户的相关资料,非常不错,具有参考借鉴价值,需要的朋友可以参考下
    2016-07-07
  • python 类的基础详解与应用

    python 类的基础详解与应用

    类用于指定对象的形式,它包含了数据表示法和用于处理数据的方法。类中的数据和方法称为类的成员。函数在一个类中被称为类的成员
    2021-11-11
  • python实现自动登录

    python实现自动登录

    这篇文章主要为大家详细介绍了python实现自动登录,填充网页表单,从而自动登录WEB门户,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-09-09
  • python实现邻接表转邻接矩阵

    python实现邻接表转邻接矩阵

    这篇文章主要介绍了python实现邻接表转邻接矩阵,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-12-12
  • 基于Python 中函数的 收集参数 机制

    基于Python 中函数的 收集参数 机制

    今天小编就为大家分享一篇基于Python 中函数的 收集参数 机制,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • langchain Prompt大语言模型使用技巧详解

    langchain Prompt大语言模型使用技巧详解

    这篇文章主要为大家介绍了langchain Prompt大语言模型使用技巧详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-07-07
  • Python判断值是否在list或set中的性能对比分析

    Python判断值是否在list或set中的性能对比分析

    这篇文章主要介绍了Python判断值是否在list或set中的性能对比分析,结合实例形式对比分析了使用list与set循环的执行效率,需要的朋友可以参考下
    2016-04-04
  • 利用Pandas和Numpy按时间戳将数据以Groupby方式分组

    利用Pandas和Numpy按时间戳将数据以Groupby方式分组

    这篇文章主要介绍了利用Pandas和Numpy按时间戳将数据以Groupby方式分组,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07
  • python 使用建议与技巧分享(四)

    python 使用建议与技巧分享(四)

    这篇文章主要介绍了python的一些使用建议与技巧分享,帮助大家更好的理解和学习python,感兴趣的朋友可以了解下
    2020-08-08

最新评论