Pytorch中Tensor与各种图像格式的相互转化详解

 更新时间:2019年12月26日 14:34:00   作者:Oldpan  
这篇文章主要介绍了Pytorch中Tensor与各种图像格式的相互转化详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

前言

在pytorch中经常会遇到图像格式的转化,例如将PIL库读取出来的图片转化为Tensor,亦或者将Tensor转化为numpy格式的图片。而且使用不同图像处理库读取出来的图片格式也不相同,因此,如何在pytorch中正确转化各种图片格式(PIL、numpy、Tensor)是一个在调试中比较重要的问题。

本文主要说明在pytorch中如何正确将图片格式在各种图像库读取格式以及tensor向量之间转化的问题。以下代码经过测试都可以在Pytorch-0.4.0或0.3.0版本直接使用。

对python不同的图像库读取格式有疑问可以看这里:https://www.jb51.net/article/177288.htm

格式转换

我们一般在pytorch或者python中处理的图像无非这几种格式:

  • PIL:使用python自带图像处理库读取出来的图片格式
  • numpy:使用python-opencv库读取出来的图片格式
  • tensor:pytorch中训练时所采取的向量格式(当然也可以说图片)

注意,之后的讲解图片格式皆为RGB三通道,24-bit真彩色,也就是我们平常使用的图片形式。

PIL与Tensor

PIL与Tensor的转换相对容易些,因为pytorch已经提供了相关的代码,我们只需要搭配使用即可:

所有代码都已经引用了(之后的代码省略引用部分):

import torch
from PIL import Image
import matplotlib.pyplot as plt

# loader使用torchvision中自带的transforms函数
loader = transforms.Compose([
  transforms.ToTensor()]) 

unloader = transforms.ToPILImage()

1 PIL读取图片转化为Tensor

# 输入图片地址
# 返回tensor变量
def image_loader(image_name):
  image = Image.open(image_name).convert('RGB')
  image = loader(image).unsqueeze(0)
  return image.to(device, torch.float)

2 将PIL图片转化为Tensor

# 输入PIL格式图片
# 返回tensor变量
def PIL_to_tensor(image):
  image = loader(image).unsqueeze(0)
  return image.to(device, torch.float)

3 Tensor转化为PIL图片

# 输入tensor变量
# 输出PIL格式图片
def tensor_to_PIL(tensor):
  image = tensor.cpu().clone()
  image = image.squeeze(0)
  image = unloader(image)
  return image

4 直接展示tensor格式图片

def imshow(tensor, title=None):
  image = tensor.cpu().clone() # we clone the tensor to not do changes on it
  image = image.squeeze(0) # remove the fake batch dimension
  image = unloader(image)
  plt.imshow(image)
  if title is not None:
    plt.title(title)
  plt.pause(0.001) # pause a bit so that plots are updated

5 直接保存tensor格式图片

def save_image(tensor, **para):
  dir = 'results'
  image = tensor.cpu().clone() # we clone the tensor to not do changes on it
  image = image.squeeze(0) # remove the fake batch dimension
  image = unloader(image)
  if not osp.exists(dir):
    os.makedirs(dir)
  image.save('results_{}/s{}-c{}-l{}-e{}-sl{:4f}-cl{:4f}.jpg'
        .format(num, para['style_weight'], para['content_weight'], para['lr'], para['epoch'],
            para['style_loss'], para['content_loss']))

numpy与Tensor

numpy格式是使用cv2,也就是python-opencv库读取出来的图片格式,需要注意的是用python-opencv读取出来的图片和使用PIL读取出来的图片数据略微不同,经测试用python-opencv读取出来的图片在训练时的效果比使用PIL读取出来的略差一些(详细过程之后发布)。

之后所有代码引用:

import cv2
import torch
import matplotlib.pyplot as plt

numpy转化为tensor

def toTensor(img):
  assert type(img) == np.ndarray,'the img type is {}, but ndarry expected'.format(type(img))
  img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
  img = torch.from_numpy(img.transpose((2, 0, 1)))
  return img.float().div(255).unsqueeze(0) # 255也可以改为256

tensor转化为numpy

def tensor_to_np(tensor):
  img = tensor.mul(255).byte()
  img = img.cpu().numpy().squeeze(0).transpose((1, 2, 0))
  return img

展示numpy格式图片

def show_from_cv(img, title=None):
  img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
  plt.figure()
  plt.imshow(img)
  if title is not None:
    plt.title(title)
  plt.pause(0.001)

展示tensor格式图片

def show_from_tensor(tensor, title=None):
  img = tensor.clone()
  img = tensor_to_np(img)
  plt.figure()
  plt.imshow(img)
  if title is not None:
    plt.title(title)
  plt.pause(0.001)

注意

上面介绍的都是一张图片的转化,如果是n张图片一起的话,只需要修改一下相应代码即可。

举个例子,将之前说过的修改略微修改一下即可:

# 将 N x H x W X C 的numpy格式图片转化为相应的tensor格式
def toTensor(img):
  img = torch.from_numpy(img.transpose((0, 3, 1, 2)))
  return img.float().div(255).unsqueeze(0)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python按照多个字符对字符串进行分割的方法

    python按照多个字符对字符串进行分割的方法

    这篇文章主要介绍了python按照多个字符对字符串进行分割的方法,涉及Python中正则表达式匹配的技巧,非常具有实用价值,需要的朋友可以参考下
    2015-03-03
  • maven冲突问题解决

    maven冲突问题解决

    这篇文章主要介绍了maven冲突问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • 使用Python进行同期群分析(Cohort Analysis)

    使用Python进行同期群分析(Cohort Analysis)

    同期群(Cohort)的字面意思(有共同特点或举止类同的)一群人,比如不同性别,不同年龄。这篇文章主要介绍了用Python语言来进行同期群分析,感兴趣的同学可以阅读参考一下本文
    2023-03-03
  • Python使用设计模式中的责任链模式与迭代器模式的示例

    Python使用设计模式中的责任链模式与迭代器模式的示例

    这篇文章主要介绍了Python使用设计模式中的责任链模式与迭代器模式的示例,责任链模式与迭代器模式都可以被看作为行为型的设计模式,需要的朋友可以参考下
    2016-03-03
  • python神经网络编程之手写数字识别

    python神经网络编程之手写数字识别

    这篇文章主要介绍了python神经网络编程之手写数字识别,文中有非常详细的代码示例,对正在学习python神经网络编程的小伙伴们有很好地帮助,需要的朋友可以参考下
    2021-05-05
  • Django框架使用内置方法实现登录功能详解

    Django框架使用内置方法实现登录功能详解

    这篇文章主要介绍了Django框架使用内置方法实现登录功能,结合实例形式详细分析了Django框架内置方法实现登录功能的相关操作技巧与使用注意事项,需要的朋友可以参考下
    2019-06-06
  • 如何一分钟内找出pandas DataFrame某列中的nan值

    如何一分钟内找出pandas DataFrame某列中的nan值

    这篇文章主要介绍了如何一分钟内找出pandas DataFrame某列中的nan值问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-09-09
  • python下MySQLdb用法实例分析

    python下MySQLdb用法实例分析

    这篇文章主要介绍了python下MySQLdb用法,实例分析了Python中MySQLdb的安装及使用技巧,包括增删改查及乱码处理的相关技巧,需要的朋友可以参考下
    2015-06-06
  • 教你怎么用Python实现GIF动图的提取及合成

    教你怎么用Python实现GIF动图的提取及合成

    今天教大家一个Python有趣好玩的小功能:将多张图片转为GIF,同时也可以将一个GIF动图提取出里面的图片,文中有非常详细的介绍及代码示例,需要的朋友可以参考下
    2021-06-06
  • python测试框架unittest和pytest区别

    python测试框架unittest和pytest区别

    这篇文章主要介绍了python测试框架unittest和pytest区别,帮助大家更好的理解和学习使用python进行自动化测试,感兴趣的朋友可以了解下
    2021-04-04

最新评论