Java8新特性Stream的完全使用指南

 更新时间:2020年05月31日 10:43:53   作者:MartinDai  
这篇文章主要给大家介绍了关于Java8新特性Stream的完全使用指南,文中通过示例代码介绍的非常详细,对大家学习或者使用Java8具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧

什么是Stream

Stream是Java 1.8版本开始提供的一个接口,主要提供对数据集合使用流的方式进行操作,流中的元素不可变且只会被消费一次,所有方法都设计成支持链式调用。使用Stream API可以极大生产力,写出高效率、干净、简洁的代码。

如何获得Stream实例

Stream提供了静态构建方法,可以基于不同的参数创建返回Stream实例

使用Collection的子类实例调用stream()或者parallelStream()方法也可以得到Stream实例,两个方法的区别在于后续执行Stream其他方法的时候是单线程还是多线程

Stream<String> stringStream = Stream.of("1", "2", "3");
//无限长的偶数流
Stream<Integer> evenNumStream = Stream.iterate(0, n -> n + 2);

List<String> strList = new ArrayList<>();
strList.add("1");
strList.add("2");
strList.add("3");
Stream<String> strStream = strList.stream();
Stream<String> strParallelStream = strList.parallelStream();

filter

filter方法用于根据指定的条件做过滤,返回符合条件的流

Stream<Integer> numStream = Stream.of(-2, -1, 0, 1, 2, 3);
//获得只包含正数的流,positiveNumStream -> (1,2,3)
Stream<Integer> positiveNumStream = numStream.filter(num -> num > 0);

map

map方法用于将流中的每个元素执行指定的转换逻辑,返回其他类型元素的流

Stream<Integer> numStream = Stream.of(-2, -1, 0, 1, 2, 3);
//转换成字符串流
Stream<String> strStream = numStream.map(String::valueOf);

mapToInt mapToLong mapToDouble

这三个方法是对map方法的封装,返回的是官方为各个类型单独定义的Stream,该Stream还提供了适合各自类型的其他操作方法

Stream<String> stringStream = Stream.of("-2", "-1", "0", "1", "2", "3");
IntStream intStream = stringStream.mapToInt(Integer::parseInt);
LongStream longStream = stringStream.mapToLong(Long::parseLong);
DoubleStream doubleStream = stringStream.mapToDouble(Double::parseDouble);

flatMap

flatMap方法用于将流中的每个元素转换成其他类型元素的流,比如,当前有一个订单(Order)列表,每个订单又包含多个商品(itemList),如果要得到所有订单的所有商品汇总,就可以使用该方法,如下:

Stream<Item> allItemStream = orderList.stream().flatMap(order -> order.itemList.stream());

flatMapToInt flatMapToLong flatMapToDouble

这三个方法是对flatMap方法的封装,返回的是官方为各个类型单独定义的Stream,使用方法同上

distinct

distinct方法用于对流中的元素去重,判断元素是否重复使用的是equals方法

Stream<Integer> numStream = Stream.of(-2, -1, 0, 0, 1, 2, 2, 3);
//不重复的数字流,uniqueNumStream -> (-2, -1, 0, 1, 2, 3)
Stream<Integer> uniqueNumStream = numStream.distinct();

sorted

sorted有一个无参和一个有参的方法,用于对流中的元素进行排序。无参方法要求流中的元素必须实现Comparable接口,不然会报java.lang.ClassCastException异常

Stream<Integer> unorderedStream = Stream.of(5, 6, 32, 7, 27, 4);
//按从小到大排序完成的流,orderedStream -> (4, 5, 6, 7, 27, 32)
Stream<Integer> orderedStream = unorderedStream.sorted();

有参方法sorted(Comparator<? super T> comparator)不需要元素实现Comparable接口,通过指定的元素比较器对流内的元素进行排序

Stream<String> unorderedStream = Stream.of("1234", "123", "12", "12345", "123456", "1");
//按字符串长度从小到大排序完成的流,orderedStream -> ("1", "12", "123", "1234", "12345", "123456")
Stream<String> orderedStream = unorderedStream.sorted(Comparator.comparingInt(String::length));

peek

peek方法可以不调整元素顺序和数量的情况下消费每一个元素,然后产生新的流,按文档上的说明,主要是用于对流执行的中间过程做debug的时候使用,因为Stream使用的时候一般都是链式调用的,所以可能会执行多次流操作,如果想看每个元素在多次流操作中间的流转情况,就可以使用这个方法实现

Stream.of("one", "two", "three", "four")
 .filter(e -> e.length() > 3)
 .peek(e -> System.out.println("Filtered value: " + e))
 .map(String::toUpperCase)
 .peek(e -> System.out.println("Mapped value: " + e))
 .collect(Collectors.toList());
 
输出:
Filtered value: three
Mapped value: THREE
Filtered value: four
Mapped value: FOUR

limit(long maxSize)

limit方法会对流进行顺序截取,从第1个元素开始,保留最多maxSize个元素

Stream<String> stringStream = Stream.of("-2", "-1", "0", "1", "2", "3");
//截取前3个元素,subStringStream -> ("-2", "-1", "0")
Stream<String> subStringStream = stringStream.limit(3);

skip(long n)

skip方法用于跳过前n个元素,如果流中的元素数量不足n,则返回一个空的流

Stream<String> stringStream = Stream.of("-2", "-1", "0", "1", "2", "3");
//跳过前3个元素,subStringStream -> ("1", "2", "3")
Stream<String> subStringStream = stringStream.skip(3);

forEach

forEach方法的作用跟普通的for循环类似,不过这个可以支持多线程遍历,但是不保证遍历的顺序

Stream<String> stringStream = Stream.of("-2", "-1", "0", "1", "2", "3");
//单线程遍历输出元素
stringStream.forEach(System.out::println);
//多线程遍历输出元素
stringStream.parallel().forEach(System.out::println);

forEachOrdered

forEachOrdered方法可以保证顺序遍历,比如这个流是从外部传进来的,然后在这之前调用过parallel方法开启了多线程执行,就可以使用这个方法保证单线程顺序遍历

Stream<String> stringStream = Stream.of("-2", "-1", "0", "1", "2", "3");
//顺序遍历输出元素
stringStream.forEachOrdered(System.out::println);
//多线程遍历输出元素,下面这行跟上面的执行结果是一样的
//stringStream.parallel().forEachOrdered(System.out::println);

toArray

toArray有一个无参和一个有参的方法,无参方法用于把流中的元素转换成Object数组

Stream<String> stringStream = Stream.of("-2", "-1", "0", "1", "2", "3");
Object[] objArray = stringStream.toArray();

有参方法toArray(IntFunction<A[]> generator)支持把流中的元素转换成指定类型的元素数组

Stream<String> stringStream = Stream.of("-2", "-1", "0", "1", "2", "3");
String[] strArray = stringStream.toArray(String[]::new);

reduce

reduce有三个重载方法,作用是对流内元素做累进操作

第一个reduce(BinaryOperator<T> accumulator)

accumulator 为累进操作的具体计算

单线程等下如下代码

boolean foundAny = false;
T result = null;
for (T element : this stream) {
 if (!foundAny) {
 foundAny = true;
 result = element;
 }
 else
 result = accumulator.apply(result, element);
}
return foundAny ? Optional.of(result) : Optional.empty();
Stream<Integer> numStream = Stream.of(-2, -1, 0, 1, 2, 3);
//查找最小值
Optional<Integer> min = numStream.reduce(BinaryOperator.minBy(Integer::compareTo));
//输出 -2
System.out.println(min.get());

//过滤出大于5的元素流
numStream = Stream.of(-2, -1, 0, 1, 2, 3).filter(num -> num > 5);
//查找最小值
min = numStream.reduce(BinaryOperator.minBy(Integer::compareTo));
//输出 Optional.empty
System.out.println(min);

第二个reduce(T identity, BinaryOperator<T> accumulator)

identity 为累进操作的初始值
accumulator 同上

单线程等价如下代码

T result = identity;
for (T element : this stream)
 result = accumulator.apply(result, element)
return result;
Stream<Integer> numStream = Stream.of(-2, -1, 0, 1, 2, 3);
//累加计算所有元素的和,sum=3
int sum = numStream.reduce(0, Integer::sum);

第三个reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combiner)

identity和accumulator同上

combiner用于多线程执行的情况下合并最终结果

Stream<Integer> numStream = Stream.of(-2, -1, 0, 1, 2, 3);
int sum = numStream.parallel().reduce(0, (a, b) -> {
 System.out.println("accumulator执行:" + a + " + " + b);
 return a + b;
}, (a, b) -> {
 System.out.println("combiner执行:" + a + " + " + b);
 return a + b;
});
System.out.println("最终结果:"+sum);

输出:
accumulator执行:0 + -1
accumulator执行:0 + 1
accumulator执行:0 + 0
accumulator执行:0 + 2
accumulator执行:0 + -2
accumulator执行:0 + 3
combiner执行:2 + 3
combiner执行:-1 + 0
combiner执行:1 + 5
combiner执行:-2 + -1
combiner执行:-3 + 6
最终结果:3

collect

collect有两个重载方法,主要作用是把流中的元素作为集合转换成其他Collection的子类,其内部实现类似于前面的累进操作

第一个collect(Supplier<R> supplier, BiConsumer<R, ? super T> accumulator, BiConsumer<R, R> combiner)

supplier 需要返回开始执行时的默认结果

accumulator 用于累进计算用

combiner 用于多线程合并结果

单线程执行等价于如下代码

R result = supplier.get();
for (T element : this stream)
 accumulator.accept(result, element);
return result;

第二个collect(Collector<? super T, A, R> collector)

collector其实是对上面的方法参数的一个封装,内部执行逻辑是一样的,只不过JDK提供了一些默认的Collector实现

Stream<Integer> numStream = Stream.of(-2, -1, 0, 1, 2, 3);
List<Integer> numList = numStream.collect(Collectors.toList());
Set<Integer> numSet = numStream.collect(Collectors.toSet());

min

min方法用于计算流内元素的最小值

Stream<Integer> numStream = Stream.of(-2, -1, 0, 1, 2, 3);
Optional<Integer> min = numStream.min(Integer::compareTo);

max

min方法用于计算流内元素的最大值

Stream<Integer> numStream = Stream.of(-2, -1, 0, 1, 2, 3);
Optional<Integer> max = numStream.max(Integer::compareTo);

count

count方法用于统计流内元素的总个数

Stream<Integer> numStream = Stream.of(-2, -1, 0, 1, 2, 3);
//count=6
long count = numStream.count();

anyMatch

anyMatch方法用于匹配校验流内元素是否有符合指定条件的元素

Stream<Integer> numStream = Stream.of(-2, -1, 0, 1, 2, 3);
//判断是否包含正数,hasPositiveNum=true
boolean hasPositiveNum = numStream.anyMatch(num -> num > 0);

allMatch

allMatch方法用于匹配校验流内元素是否所有元素都符合指定条件

Stream<Integer> numStream = Stream.of(-2, -1, 0, 1, 2, 3);
//判断是否全部是正数,allNumPositive=false
boolean allNumPositive = numStream.allMatch(num -> num > 0);

noneMatch

noneMatch方法用于匹配校验流内元素是否都不符合指定条件

Stream<Integer> numStream = Stream.of(-2, -1, 0, 1, 2, 3);
//判断是否没有小于0的元素,noNegativeNum=false
boolean noNegativeNum = numStream.noneMatch(num -> num < 0);

findFirst

findFirst方法用于获取第一个元素,如果流是空的,则返回Optional.empty

Stream<Integer> numStream = Stream.of(-2, -1, 0, 1, 2, 3);
//获取第一个元素,firstNum=-2
Optional<Integer> firstNum = numStream.findFirst();

findAny

findAny方法用于获取流中的任意一个元素,如果流是空的,则返回Optional.empty,因为可能会使用多线程,所以不保证每次返回的是同一个元素

Stream<Integer> numStream = Stream.of(-2, -1, 0, 1, 2, 3);
Optional<Integer> anyNum = numStream.findAny();

总结

到此这篇关于Java8新特性Stream的完全使用指南就介绍到这了,更多相关Java8 Stream使用指南内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Spring中的BeanFactory与FactoryBean区别详解

    Spring中的BeanFactory与FactoryBean区别详解

    这篇文章主要介绍了Spring中的BeanFactory与FactoryBean区别详解,BeanFactory是一个接口,它是spring中的一个工厂,FactoryBean也是一个接口,实现了3个方法,通过重写其中方法自定义生成bean,需要的朋友可以参考下
    2024-01-01
  • springboot+VUE前后端分离实现疫情防疫平台JAVA

    springboot+VUE前后端分离实现疫情防疫平台JAVA

    本文主要使用了Java、springmvc、VUE、node.js、mybatis、mysql、tomcat、jquery、layui、bootstarp、JavaScript、html、css、jsp、log4j等一些常见的基本技术,实现一个疫情防疫小平台
    2021-08-08
  • Java调用groovy脚本的方式分享

    Java调用groovy脚本的方式分享

    Groovy 是一种基于 JVM 的动态语言,与 Java 语言紧密集成,可以很方便地在 Java 项目中使用。本文为大家整理了Java调用groovy脚本的几种方式,希望对大家有所帮助
    2023-04-04
  • java多线程开发ScheduledExecutorService简化方式

    java多线程开发ScheduledExecutorService简化方式

    这篇文章主要为大家介绍了java多线程开发ScheduledExecutorService的简化方式,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步
    2022-03-03
  • Spring Boot 2.6.x整合Swagger启动失败报错问题的完美解决办法

    Spring Boot 2.6.x整合Swagger启动失败报错问题的完美解决办法

    这篇文章主要给大家介绍了关于Spring Boot 2.6.x整合Swagger启动失败报错问题的完美解决办法,文中通过实例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2022-03-03
  • JAVA中的OutputStreamWriter流解析

    JAVA中的OutputStreamWriter流解析

    这篇文章主要介绍了JAVA中的OutputStreamWriter流解析,OutputStreamWriter提供了一种方便的方式将字符数据写入到输出流中,并进行字符编码转换,它是Java中处理字符流和字节流之间转换的重要工具之一,需要的朋友可以参考下
    2023-10-10
  • Springboot整合hibernate validator 全局异常处理步骤详解

    Springboot整合hibernate validator 全局异常处理步骤详解

    本文分步骤给大家介绍Springboot整合hibernate validator 全局异常处理,补呢文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧
    2024-01-01
  • Hadoop之Mapreduce序列化

    Hadoop之Mapreduce序列化

    本文主要带我们了解Mapreduce序列化,序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘(持久化)和网络传输。想进一步了解更多的小伙伴,可以参考阅读本文
    2023-03-03
  • Java中的CompletableFuture异步编程详解

    Java中的CompletableFuture异步编程详解

    这篇文章主要介绍了Java中的CompletableFuture异步编程详解,只要提到多线程来优化性能,那么必定离不开异步化,异步化的出现才是多线程优化性能这个核心方案的基础,需要的朋友可以参考下
    2023-12-12
  • 详解Java中的内存屏障

    详解Java中的内存屏障

    这篇文章主要介绍了Java中的内存屏障的相关资料,帮助大家更好的理解和学习使用Java,感兴趣的朋友可以了解下
    2021-05-05

最新评论