Java 通过AQS实现数据组织

 更新时间:2021年04月08日 17:17:05   作者:贝克街的流浪猫  
这篇文章主要介绍了通过AQS实现数据组织,想了解AQS的同学可以参考下

引言

从本篇文章开始,我们将介绍 Java AQS 的实现方式,本文先介绍 AQS 的内部数据是如何组织的,后面的文章中再分别介绍 AQS 的各个部门实现。

AQS

通过前面的介绍,大家一定看出来了,上述的各种类型的锁和一些线程控制接口(CountDownLatch 等),最终都是通过 AQS 来实现的,不同之处只在于 tryAcquire 等抽象函数如何实现。从这个角度来看,AQS(AbstractQueuedSynchronizer) 这个基类设计的真的很不错,能够包容各种同步控制方案,并提供了必须的下层依赖:比如阻塞,队列等。接下来我们就来揭开它神秘的面纱。

内部数据

AQS 顾名思义,就是通过队列来组织修改互斥资源的请求。当这个资源空闲时间,那么修改请求可以直接进行,而当这个资源处于锁定状态时,就需要等待,AQS 会将所有等待的请求维护在一个类似于 CLH 的队列中。CLH:Craig、Landin and Hagersten队列,是单向链表,AQS中的队列是CLH变体的虚拟双向队列(FIFO),AQS是通过将每条请求共享资源的线程封装成一个节点来实现锁的分配。主要原理图如下:

图中的 state 是一个用 volatile 修饰的 int 变量,它的使用都是通过 CAS 来进行的,而 FIFO 队列完成请求排队的工作,队列的操作也是通过 CAS 来进行的,正因如此该队列的操作才能达到理想的性能要求。

通过 CAS 修改 state 比较容易,大家应该都能理解,但是如果要通过 CAS 维护一个双向队列要怎么做呢?这里我们看一下 AQS 中 CLH 队列的实现。在 AQS 中有两个指针一个指针指向了队列头,一个指向了队列尾。它们都是懒初始化的,也就是说最初都为null。

/**
 * Head of the wait queue, lazily initialized.  Except for
 * initialization, it is modified only via method setHead.  Note:
 * If head exists, its waitStatus is guaranteed not to be
 * CANCELLED.
 */
private transient volatile Node head;

/**
 * Tail of the wait queue, lazily initialized.  Modified only via
 * method enq to add new wait node.
 */
private transient volatile Node tail;

队列中的每个节点,都是一个 Node 实例,该实例的第一个关键字段是 waitState,它表述了当前节点所处的状态,通过 CAS 进行修改:

  • SIGNAL:表示当前节点承担唤醒后继节点的责任
  • CANCELLED:表示当前节点已经超时或者被打断
  • CONDITION:表示当前节点正在 Condition 上等待(通过锁可以创建 Condition 对象)
  • PROPAGATE:只会设置在 head 节点上,用于表明释放共享锁时,需要将这个行为传播到其他节点上,这个我们稍后详细介绍。
static final class Node {
    /** Marker to indicate a node is waiting in shared mode */
    static final Node SHARED = new Node();
    /** Marker to indicate a node is waiting in exclusive mode */
    static final Node EXCLUSIVE = null;

    /** waitStatus value to indicate thread has cancelled */
    static final int CANCELLED =  1;
    /** waitStatus value to indicate successor's thread needs unparking */
    static final int SIGNAL    = -1;
    /** waitStatus value to indicate thread is waiting on condition */
    static final int CONDITION = -2;
    /**
     * waitStatus value to indicate the next acquireShared should
     * unconditionally propagate
     */
    static final int PROPAGATE = -3;

    /**
     * Status field, taking on only the values:
     *   SIGNAL:     The successor of this node is (or will soon be)
     *               blocked (via park), so the current node must
     *               unpark its successor when it releases or
     *               cancels. To avoid races, acquire methods must
     *               first indicate they need a signal,
     *               then retry the atomic acquire, and then,
     *               on failure, block.
     *   CANCELLED:  This node is cancelled due to timeout or interrupt.
     *               Nodes never leave this state. In particular,
     *               a thread with cancelled node never again blocks.
     *   CONDITION:  This node is currently on a condition queue.
     *               It will not be used as a sync queue node
     *               until transferred, at which time the status
     *               will be set to 0. (Use of this value here has
     *               nothing to do with the other uses of the
     *               field, but simplifies mechanics.)
     *   PROPAGATE:  A releaseShared should be propagated to other
     *               nodes. This is set (for head node only) in
     *               doReleaseShared to ensure propagation
     *               continues, even if other operations have
     *               since intervened.
     *   0:          None of the above
     *
     * The values are arranged numerically to simplify use.
     * Non-negative values mean that a node doesn't need to
     * signal. So, most code doesn't need to check for particular
     * values, just for sign.
     *
     * The field is initialized to 0 for normal sync nodes, and
     * CONDITION for condition nodes.  It is modified using CAS
     * (or when possible, unconditional volatile writes).
     */
    volatile int waitStatus;

    /**
     * Link to predecessor node that current node/thread relies on
     * for checking waitStatus. Assigned during enqueuing, and nulled
     * out (for sake of GC) only upon dequeuing.  Also, upon
     * cancellation of a predecessor, we short-circuit while
     * finding a non-cancelled one, which will always exist
     * because the head node is never cancelled: A node becomes
     * head only as a result of successful acquire. A
     * cancelled thread never succeeds in acquiring, and a thread only
     * cancels itself, not any other node.
     */
    volatile Node prev;

    /**
     * Link to the successor node that the current node/thread
     * unparks upon release. Assigned during enqueuing, adjusted
     * when bypassing cancelled predecessors, and nulled out (for
     * sake of GC) when dequeued.  The enq operation does not
     * assign next field of a predecessor until after attachment,
     * so seeing a null next field does not necessarily mean that
     * node is at end of queue. However, if a next field appears
     * to be null, we can scan prev's from the tail to
     * double-check.  The next field of cancelled nodes is set to
     * point to the node itself instead of null, to make life
     * easier for isOnSyncQueue.
     */
    volatile Node next;

    /**
     * The thread that enqueued this node.  Initialized on
     * construction and nulled out after use.
     */
    volatile Thread thread;

    /**
     * Link to next node waiting on condition, or the special
     * value SHARED.  Because condition queues are accessed only
     * when holding in exclusive mode, we just need a simple
     * linked queue to hold nodes while they are waiting on
     * conditions. They are then transferred to the queue to
     * re-acquire. And because conditions can only be exclusive,
     * we save a field by using special value to indicate shared
     * mode.
     */
    Node nextWaiter;

    /**
     * Returns true if node is waiting in shared mode.
     */
    final boolean isShared() {
        return nextWaiter == SHARED;
    }
    //...
}

因为是双向队列,所以 Node 实例中势必有 prev 和 next 指针,此外 Node 中还会保存与其对应的线程。最后是 nextWaiter,当一个节点对应了共享请求时,nextWaiter 指向了 Node. SHARED 而当一个节点是排他请求时,nextWaiter 默认指向了 Node. EXCLUSIVE 也就是 null。我们知道 AQS 也提供了 Condition 功能,该功能就是通过 nextWaiter 来维护在 Condition 上等待的线程。也就是说这里的 nextWaiter 在锁的实现部分中,扮演者共享锁和排它锁的标志位,而在条件等待队列中,充当链表的 next 指针。

同步队列

接下来,我们由最常见的入队操作出发,介绍 AQS 框架的实现与使用。从下面的代码中可以看到入队操作支持两种模式,一种是排他模式,一种是共享模式,分别对应了排它锁场景和共享锁场景。

  1. 当任意一种请求,要入队时,先会构建一个 Node 实例,然后获取当前 AQS 队列的尾结点,如果尾结点为空,就是说队列还没初始化,初始化过程在后面 enq 函数中实现
  2. 这里我们先看初始化之后的情况,即 tail != null,先将当前 Node 的前向指针 prev 更新,然后通过 CAS 将尾结点修改为当前 Node,修改成功时,再更新前一个节点的后向指针 next,因为只有修改尾指针过程是原子的,所以这里会出现新插入一个节点时,之前的尾节点 previousTail 的 next 指针为null的情况,也就是说会存在短暂的正向指针和反向指针不同步的情况,不过在后面的介绍中,你会发现 AQS 很完备地避开了这种不同步带来的风险(通过从后往前遍历)
  3. 如果上述操作成功,则当前线程已经进入同步队列,否则,可能存在多个线程的竞争,其他线程设置尾结点成功了,而当前线程失败了,这时候会和尾结点未初始化一样进入 enq 函数中。
/**
 * Creates and enqueues node for current thread and given mode.
 *
 * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
 * @return the new node
 */
private Node addWaiter(Node mode) {
    Node node = new Node(Thread.currentThread(), mode);
    // Try the fast path of enq; backup to full enq on failure
    Node pred = tail;
    if (pred != null) {
        // 已经进行了初始化
        node.prev = pred;
        // CAS 修改尾节点
        if (compareAndSetTail(pred, node)) {
            // 成功之后再修改后向指针
            pred.next = node;
            return node;
        }
    }
    // 循环 CAS 过程和初始化过程
    enq(node);
    return node;
}

正常通过 CAS 修改数据都会在一个循环中进行,而这里的 addWaiter 只是在一个 if 中进行,这是为什么呢?实际上,大家看到的 addWaiter 的这部分 CAS 过程是一个快速执行线,在没有竞争时,这种方式能省略不少判断过程。当发生竞争时,会进入 enq 函数中,那里才是循环 CAS 的地方。

  1. 整个 enq 的工作在一个循环中进行
  2. 先会检查是否未进行初始化,是的话,就设置一个虚拟节点 Node 作为 head 和 tail,也就是说同步队列的第一个节点并不保存实际数据,只是一个保存指针的地方
  3. 初始化完成后,通过 CAS 修改尾节点,直到修改成功为止,最后修复后向指针
/**
 * Inserts node into queue, initializing if necessary. See picture above.
 * @param node the node to insert
 * @return node's predecessor
 */
private Node enq(final Node node) {
    for (;;) {// 在一个循环中进行 CAS 操作
        Node t = tail;
        if (t == null) { // Must initialize
            if (compareAndSetHead(new Node()))
                tail = head;
        } else {
            node.prev = t;
            // CAS 修改尾节点
            if (compareAndSetTail(t, node)) {
                // 成功之后再修改后向指针
                t.next = node;
                return t;
            }
        }

以上就是通过AQS实现数据组织的详细内容,更多关于AQS数据组织的资料请关注脚本之家其它相关文章!

相关文章

  • SpringMVC使用@ExceptionHandler注解在Controller中处理异常

    SpringMVC使用@ExceptionHandler注解在Controller中处理异常

    这篇文章主要为大家介绍了SpringMVC使用@ExceptionHandler注解在Controller中处理异常示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-10-10
  • SpringBoot Actuator未授权访问漏洞的排查和解决方法

    SpringBoot Actuator未授权访问漏洞的排查和解决方法

    Spring Boot Actuator 是开发和管理生产级 Spring Boot 应用程序的重要工具,它可以帮助你确保应用程序的稳定性和性能,本文给大家介绍了SpringBoot Actuator未授权访问漏洞的排查和解决方法,需要的朋友可以参考下
    2024-05-05
  • Maven依赖管理之parent与dependencyManagement深入分析

    Maven依赖管理之parent与dependencyManagement深入分析

    首先我们来说说parent标签,其实这个不难解释,就是父的意思,pom也有继承的。比方说我现在有A,B,C,A是B,C的父级。现在就是有一个情况B,C其实有很多jar都是共同的,其实是可以放在父项目里面,这样,让B,C都继承A就方便管理了
    2022-10-10
  • maven 插件 assembly 打tar.gz包的详细过程

    maven 插件 assembly 打tar.gz包的详细过程

    这篇文章主要介绍了maven插件assembly打tar.gz包的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-06-06
  • mybatis-plus自带QueryWrapper自定义sql实现复杂查询实例详解

    mybatis-plus自带QueryWrapper自定义sql实现复杂查询实例详解

    MyBatis-Plus是一个MyBatis(opens new window)的增强工具,在 MyBatis的基础上只做增强不做改变,MyBatis可以无损升级为MyBatis-Plus,这篇文章主要给大家介绍了关于mybatis-plus自带QueryWrapper自定义sql实现复杂查询的相关资料,需要的朋友可以参考下
    2022-10-10
  • SpringBoot实现Read Through模式的操作过程

    SpringBoot实现Read Through模式的操作过程

    Read Through模式通常是指一种缓存策略,其中当应用程序尝试读取数据时,缓存系统首先被检查以查看数据是否已经存在于缓存中,这篇文章主要介绍了SpringBoot实现Read Through模式,需要的朋友可以参考下
    2024-07-07
  • java实现PDF转图片的方法

    java实现PDF转图片的方法

    这篇文章主要为大家详细介绍了java实现PDF转图片的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-07-07
  • java线性表排序示例分享

    java线性表排序示例分享

    这篇文章主要介绍了java线性表排序示例,需要的朋友可以参考下
    2014-03-03
  • SpringBoot详细讲解如何创建及刷新Spring容器bean

    SpringBoot详细讲解如何创建及刷新Spring容器bean

    前面看spring源码时可以发现refresh()方法十分重要。在这个方法中会加载beanDefinition,同时创建bean对象。那么在springboot中有没有使用这个refresh()方法呢
    2022-06-06
  • Java 详细讲解线程安全与同步附实例与注释

    Java 详细讲解线程安全与同步附实例与注释

    线程安全是多线程编程时的计算机程序代码中的一个概念。在拥有共享数据的多条线程并行执行的程序中,线程安全的代码会通过同步机制保证各个线程都可以正常且正确的执行,不会出现数据污染等意外情况
    2022-04-04

最新评论