R语言中逻辑回归知识点总结

 更新时间:2021年05月07日 15:13:14   作者:w3cschool  
在本篇文章里小编给大家总结了关于R语言中逻辑回归知识点相关内容,有需要的朋友们跟着学习下。

逻辑回归是回归模型,其中响应变量(因变量)具有诸如True / False或0/1的分类值。 它实际上基于将其与预测变量相关的数学方程测量二元响应的概率作为响应变量的值。

逻辑回归的一般数学方程为

y = 1/(1+e^-(a+b1x1+b2x2+b3x3+...))

以下是所使用的参数的描述 

  • y是响应变量。
  • x是预测变量。
  • a和b是作为数字常数的系数。

用于创建回归模型的函数是glm()函数。

语法

逻辑回归中glm()函数的基本语法是

glm(formula,data,family)

以下是所使用的参数的描述 

  • formula是表示变量之间的关系的符号。
  • data是给出这些变量的值的数据集。
  • family是R语言对象来指定模型的细节。 它的值是二项逻辑回归。

内置数据集“mtcars”描述具有各种发动机规格的汽车的不同型号。 在“mtcars”数据集中,传输模式(自动或手动)由am列描述,它是一个二进制值(0或1)。 我们可以在列“am”和其他3列(hp,wt和cyl)之间创建逻辑回归模型。

# Select some columns form mtcars.
input <- mtcars[,c("am","cyl","hp","wt")]

print(head(input))

当我们执行上面的代码,它产生以下结果

                  am   cyl  hp    wt
Mazda RX4          1   6    110   2.620
Mazda RX4 Wag      1   6    110   2.875
Datsun 710         1   4     93   2.320
Hornet 4 Drive     0   6    110   3.215
Hornet Sportabout  0   8    175   3.440
Valiant            0   6    105   3.460

创建回归模型

我们使用glm()函数创建回归模型,并得到其摘要进行分析。

input <- mtcars[,c("am","cyl","hp","wt")]

am.data = glm(formula = am ~ cyl + hp + wt, data = input, family = binomial)

print(summary(am.data))

当我们执行上面的代码,它产生以下结果

Call:
glm(formula = am ~ cyl + hp + wt, family = binomial, data = input)

Deviance Residuals: 
     Min        1Q      Median        3Q       Max  
-2.17272    0.14907 0.01464     0.14116   1.27641  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)  
(Intercept) 19.70288    8.11637   2.428   0.0152 *
cyl          0.48760    1.07162   0.455   0.6491  
hp           0.03259    0.01886   1.728   0.0840 .
wt         9.14947    4.15332 2.203   0.0276 *
---
Signif. codes:  0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 43.2297  on 31  degrees of freedom
Residual deviance:  9.8415  on 28  degrees of freedom
AIC: 17.841

Number of Fisher Scoring iterations: 8

结论

在总结中,对于变量“cyl”和“hp”,最后一列中的p值大于0.05,我们认为它们对变量“am”的值有贡献是无关紧要的。 只有重量(wt)影响该回归模型中的“am”值。

到此这篇关于R语言中逻辑回归知识点总结的文章就介绍到这了,更多相关R语言逻辑回归内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 用R语言绘制函数曲线图

    用R语言绘制函数曲线图

    这篇文章主要介绍了如何用R语言绘制函数曲线图,帮助大家更好的理解和学习使用R语言,感兴趣的朋友可以了解下
    2021-03-03
  • R语言条形图创建方法

    R语言条形图创建方法

    在本篇文章里小编给大家整理的是一篇关于R语言条形图创建方法,有需要的朋友们可以跟着学习参考下。
    2021-04-04
  • R语言绘制Bubble Matrix气泡矩阵图

    R语言绘制Bubble Matrix气泡矩阵图

    这篇文章主要为大家介绍了R语言绘制Bubble Matrix气泡矩阵图的示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助祝大家多多进步
    2022-02-02
  • R语言编程重读微积分泰勒级数示例详解

    R语言编程重读微积分泰勒级数示例详解

    这篇文章主要为大家介绍了R语言编程重读微积分泰勒级数的示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2021-10-10
  • R语言中fread使用方法

    R语言中fread使用方法

    在R语言中,fread函数是data.table包中的一个功能强大的数据读取函数,可以用于快速读取大型数据文件,它比基本的read.table和read.csv函数更快,尤其在处理大型数据集时效果更为明显,这篇文章主要介绍了R语言中fread使用方法,需要的朋友可以参考下
    2023-12-12
  • 关于R语言lubridate包处理时间数据的问题

    关于R语言lubridate包处理时间数据的问题

    这篇文章主要介绍了关于R语言lubridate包处理时间数据的问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-05-05
  • R语言-使用快捷键快速注释的实现

    R语言-使用快捷键快速注释的实现

    这篇文章主要介绍了R语言-使用快捷键快速注释的实现方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • R语言 数据集行列互换的技巧分享

    R语言 数据集行列互换的技巧分享

    这篇文章主要介绍了R语言 数据集行列互换的技巧分享,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • R语言中for循环的并行处理方式

    R语言中for循环的并行处理方式

    这篇文章主要介绍了R语言中for循环的并行处理方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • R语言绘制数据可视化小提琴图Violin plot with dot画法

    R语言绘制数据可视化小提琴图Violin plot with dot画法

    这篇文章主要为大家介绍了R语言绘制数据可视化小提琴图Violin plot with dot画法的示例详解有需要的朋友可以借鉴参考下希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-02-02

最新评论