Python机器学习之PCA降维算法详解

 更新时间:2021年05月19日 16:30:52   作者:ProChick  
今天带大家复习python机器学习的知识点,文中对PCA降维算法介绍的非常详细,对正在学习python机器学习的小伙伴们有很好地帮助,需要的朋友可以参考下

一、算法概述

  • 主成分分析 (Principal ComponentAnalysis,PCA)是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。
  • PCA 是最常用的一种降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的空间中,并期望在所投影的维度上数据的方差最大,以此使用较少的维度,同时保留较多原数据的维度。
  • PCA 算法目标是求出样本数据协方差矩阵的特征值和特征向量,而协方差矩阵的特征向量的方向就是PCA需要投影的方向。使样本数据向低维投影后,能尽可能表征原始的数据。
  • PCA 可以把具有相关性的高维变量合成为线性无关的低维变量,称为主成分。主成分能够尽可能的保留原始数据的信息。
  • PCA 通常用于高维数据集的探索与可视化,还可以用作数据压缩和预处理等。

二、算法步骤

在这里插入图片描述

1.将原始数据按行组成m行n列的矩阵X

2.将X的每一列(代表一个属性字段)进行零均值化,即减去这一列的均值

3.求出协方差矩阵

4.求出协方差矩阵的特征值及对应的特征向量r

5.将特征向量按对应特征值大小从左到右按列排列成矩阵,取前k列组成矩阵P

6.计算降维到k维的数据

三、相关概念

  • 方差:描述一个数据的离散程度

在这里插入图片描述

  • 协方差:描述两个数据的相关性,接近1就是正相关,接近-1就是负相关,接近0就是不相关

在这里插入图片描述

  • 协方差矩阵:协方差矩阵是一个对称的矩阵,而且对角线是各个维度的方差

在这里插入图片描述

  • 特征值:用于选取降维的K个特征值
  • 特征向量:用于选取降维的K个特征向量

四、算法优缺点

优点

  • 仅仅需要以方差衡量信息量,不受数据集以外的因素影响。
  • 各主成分之间正交,可消除原始数据成分间的相互影响的因素。
  • 计算方法简单,主要运算是特征值分解,易于实现。

缺点

  • 主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强。
  • 方差小的非主成分也可能含有对样本差异的重要信息,降维丢弃的数据可能对后续数据处理有影响。

五、算法实现

自定义实现

import numpy as np


# 对初始数据进行零均值化处理
def zeroMean(dataMat):
    # 求列均值
    meanVal = np.mean(dataMat, axis=0)
    # 求列差值
    newData = dataMat - meanVal
    return newData, meanVal


# 对初始数据进行降维处理
def pca(dataMat, percent=0.19):
    newData, meanVal = zeroMean(dataMat)

    # 求协方差矩阵
    covMat = np.cov(newData, rowvar=0)

    # 求特征值和特征向量
    eigVals, eigVects = np.linalg.eig(np.mat(covMat))

    # 抽取前n个特征向量
    n = percentage2n(eigVals, percent)
    print("数据降低到:" + str(n) + '维')

    # 将特征值按从小到大排序
    eigValIndice = np.argsort(eigVals)
    # 取最大的n个特征值的下标
    n_eigValIndice = eigValIndice[-1:-(n + 1):-1]
    # 取最大的n个特征值的特征向量
    n_eigVect = eigVects[:, n_eigValIndice]

    # 取得降低到n维的数据
    lowDataMat = newData * n_eigVect
    reconMat = (lowDataMat * n_eigVect.T) + meanVal

    return reconMat, lowDataMat, n


# 通过方差百分比确定抽取的特征向量的个数
def percentage2n(eigVals, percentage):
    # 按降序排序
    sortArray = np.sort(eigVals)[-1::-1]
    # 求和
    arraySum = sum(sortArray)

    tempSum = 0
    num = 0
    for i in sortArray:
        tempSum += i
        num += 1
        if tempSum >= arraySum * percentage:
            return num


if __name__ == '__main__':
    # 初始化原始数据(行代表样本,列代表维度)
    data = np.random.randint(1, 20, size=(6, 8))
    print(data)

    # 对数据降维处理
    fin = pca(data, 0.9)
    mat = fin[1]
    print(mat)

利用Sklearn库实现

import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris

# 加载数据
data = load_iris()
x = data.data
y = data.target

# 设置数据集要降低的维度
pca = PCA(n_components=2)
# 进行数据降维
reduced_x = pca.fit_transform(x)

red_x, red_y = [], []
green_x, green_y = [], []
blue_x, blue_y = [], []

# 对数据集进行分类
for i in range(len(reduced_x)):
    if y[i] == 0:
        red_x.append(reduced_x[i][0])
        red_y.append(reduced_x[i][1])
    elif y[i] == 1:
        green_x.append(reduced_x[i][0])
        green_y.append(reduced_x[i][1])
    else:
        blue_x.append(reduced_x[i][0])
        blue_y.append(reduced_x[i][1])

plt.scatter(red_x, red_y, c='r', marker='x')
plt.scatter(green_x, green_y, c='g', marker='D')
plt.scatter(blue_x, blue_y, c='b', marker='.')
plt.show()

六、算法优化

PCA是一种线性特征提取算法,通过计算将一组特征按重要性从小到大重新排列得到一组互不相关的新特征,但该算法在构造子集的过程中采用等权重的方式,忽略了不同属性对分类的贡献是不同的。

  • KPCA算法

KPCA是一种改进的PCA非线性降维算法,它利用核函数的思想,把样本数据进行非线性变换,然后在变换空间进行PCA,这样就实现了非线性PCA。

  • 局部PCA算法

局部PCA是一种改进的PCA局部降维算法,它在寻找主成分时加入一项具有局部光滑性的正则项,从而使主成分保留更多的局部性信息。

到此这篇关于Python机器学习之PCA降维算法详解的文章就介绍到这了,更多相关Python PCA降维算法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • pandas中删除列的几种方法

    pandas中删除列的几种方法

    在pandas中有多种方法可以删除列,本文主要介绍了pandas中删除列的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2024-07-07
  • python怎么自定义捕获错误

    python怎么自定义捕获错误

    在本篇文章里小编给大家分享了关于python自定义捕获错误的方法,需要的朋友们可以学习下。
    2020-06-06
  • 使用pytorch实现可视化中间层的结果

    使用pytorch实现可视化中间层的结果

    今天小编就为大家分享一篇使用pytorch实现可视化中间层的结果,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • Python中多线程及程序锁浅析

    Python中多线程及程序锁浅析

    这篇文章主要介绍了Python中多线程及程序锁浅析,本文用一个实例讲解Python的多线程和程序锁,需要的朋友可以参考下
    2015-01-01
  • 利用Python和C++实现解析gltf文件

    利用Python和C++实现解析gltf文件

    gltf是类似于stl、obj、ply等常见的3D对象存储格式,它被设计出来是为了便于渲染的数据转换和传输,本文为大家介绍了使用Python和C++解析gltf文件的方法,感兴趣的可以了解下
    2023-09-09
  • Python对list列表结构中的值进行去重的方法总结

    Python对list列表结构中的值进行去重的方法总结

    这篇文章主要介绍了Python对列表list中的值进行去重的方法总结,文中给出的方法都能保持去重后的顺序不发生改变,需要的朋友可以参考下
    2016-05-05
  • python 爬取京东指定商品评论并进行情感分析

    python 爬取京东指定商品评论并进行情感分析

    本文主要讲述了利用Python网络爬虫对指定京东商城中指定商品下的用户评论进行爬取,对数据预处理操作后进行文本情感分析,感兴趣的朋友可以了解下
    2021-05-05
  • 如何在C++中调用Python

    如何在C++中调用Python

    虽然现在Python编程语言十分的火爆,但是实际上非要用一门语言去完成所有的任务,并不是说不可以,而是不合适。在一些特定的、对于性能要求比较高的场景,还是需要用到传统的C++来进行编程的。本文将用C++的代码去调用Python函数中实现的一些功能
    2021-05-05
  • Django Rest framework之权限的实现示例

    Django Rest framework之权限的实现示例

    这篇文章主要介绍了Django Rest framework之权限的实现示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-12-12
  • 基于Python实现条形码图片识别程序

    基于Python实现条形码图片识别程序

    这篇文章主要为大家详细介绍了如何基于Python实现一个简单的条形码图片识别程序,可以视频图片中的条形码,感兴趣的小伙伴可以跟随小编学习一下
    2023-09-09

最新评论