java boolean占用内存大小说明

 更新时间:2021年06月04日 09:17:35   作者:云梦九章  
这篇文章主要介绍了java boolean占用内存大小,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

答案:4B或1B

详细

1、如果boolean是单独使用:boolean占4个字节。

2、如果boolean是以boolean数组形式使用:boolean占1个字节

解释

1、JVM没有提供boolean类型专用的字节指令,而是使用int相关指令来代替。

2、对boolean数组的访问与修改,会共用byte数组的baload和bastore指令。

分析结论

上面的第一个结论是说:boolean在底层实际调用int,那么既然int占4个字节,boolean页自然占4个字节。即 boolean类型占4个字节。

上面的第2个结论是说:boolean数组在底层会用byte指令,那么既然byte占1个字节,boolean数组中的boolean也就占1个字节,即,boolean数组中的boolean占1个字节。

扩展

1、因此,大多数对于boolean,byte,char和short类型数据的操作,实际都提升int,并使用int做为运算类型,所以他们占4个字节,实际上,虚拟机规范也只有4字节和8字节类型(long,float),boolean,char,short都是占了4字节。

2、对于在栈上(局部变量)的byte,char,short类型的数据,在内存中的确会占4字节,但这对于(数组)对象来说并不适用。

java各种类型对象占用内存情况分析

经典篇,有图有真相

为什么写这篇文章?

其实一般的程序猿根本不用了解这么深,只有当你到了一定层次,需要了解jvm内部运行机制,或者高并发多线程下,你写的代码对内存有影响,你想做性能优化。。。等等等等,一句话,当你想深入了解java对象在内存中,如何存储,或者每个对象占用多大空间时,你会感谢这篇文章

本文主要分析jvm中的情况,实验环境为64位window10系统、JDK1.8,使用JProfiler进行结论验证

很多描述以及 概念是基于你懂基本java知识的,如果你看起来有点吃力,要加油咯

基本数据类型占用

类型 占用空间
boolean、byte 1byte
short、char 2byte
int、float 4byte
long、double 8byte

接下来用JProfiler验证:

新建一个空对象,观察空对象内存占用

public class TestObject {
}

对象占用内存 16b,如图

在这里插入图片描述

结论:一般自建空对象占用内存 16b,16 = 12 + 4

在TestObj中新增一个 int 属性,观察对象内存占用

public class TestObj {
    private int i;
}

对象占用内存 16b,如图

在这里插入图片描述

结论:int 占用 4b, 4 = 16 -12

在TestObj中新增一个 long 属性,观察对象内存占用

public class TestObj {
    private long i;
}

对象占用内存 24b,如图

在这里插入图片描述

结论:long 占用 8b, 8 = 24 -12 - 4

其余基本类型可以参照以上自行验证,原理一样

包装类型占用

包装类(Boolean/Byte/Short/Character/Integer/Long/Double/Float)占用内存的大小等于对象头大小加上底层基础数据类型的大小。

类型占用空间Boolean、Byte16byteShort、Char16byteInteger、Float16byteLong、Double24byte 在TestObj中新增一个 Integer 属性,观察对象内存占用

类型 占用空间
Boolean、Byte 16byte
Short、Char 16byte
Integer、Float 16byte
Long、Double 24byte
public class TestObj {
   private Integer  i =128;
}

对象占用内存 32b,如图

在这里插入图片描述

结论:Integer 占用 16b, 16 = 32 - 16

特别的:-128~127 之间的封装类型,只占用 4b**

在TestObj中新增一个 Long 属性,观察对象内存占用

public class TestObj {
   private Long  l = new Long(1);
}

对象占用内存 40b,如图

在这里插入图片描述

结论:Long 占用 24b, 16 = 40 - 16

其余包装类型可以参照以上自行验证,原理一样

基本类型数组占用

64位机器上,数组对象的对象头占用24 bytes,启用压缩后占用16字节。比普通对象占用内存多是因为需要额外的空间存储数组的长度(普通16b-12b)。

对象数组本身的大小=数组对象头 + length * 存放单个元素大小

在TestObj中新增一个 char[] 属性,观察对象内存占用

public class TestObj {
   private char[] c = {'a','b','c'};
}

对象占用内存 40b,如图

在这里插入图片描述

结论:char[3] 占用 24b, 24 = 40 - 16,24 = 16 + 3 * 2 + 2

封装类型数组占用

封装类型数组比基本类型的数组,需要多管理元素的引用

对象数组本身的大小=数组对象头+length 引用指针大小 + length 存放单个元素大小

在TestObj中新增一个 Integer[] 属性,观察对象内存占用

public class TestObj {
    private Integer[] i = {128,129,130};
}

对象占用内存 80b,如图

在这里插入图片描述

结论:Integer[3] 占用 80b, 80 = 96 - 16 , 80 = 16 + 3 4 + 3 16 +4

String占用内存 在TestObj中新增一个空 String 属性,观察对象内存占用

public class TestObj {
    private String s = new String("");
}

对象占用内存 40b,如图

在这里插入图片描述

结论:String 本身占用 24b, 24 = 40 -16,另外,String的属性value还需要 16b,也就是说空””也需要16b

注意:这里为什么要写String s = new String(“”)?请自己思考,不写会怎么样?

答:如果写成String s = “”,是不会再堆中开辟内存的,也就看不到String占用的空间,你看到的将会是下面的,至于为什么,都是因为final

在这里插入图片描述

ArrayList, HashMap的内存占用

这些参考文章开头提到的那篇文章,下面给出计算公式:

一个ArrayList实例本身的的大小为

12(header) + 4(modCount) + 4(size) + 4(elementData reference) = 24 (bytes)

下面分析一个只有一个Integer(1)元素的ArrayList实例占用的内存大小。

ArrayList<Integer> testList = Lists.newArrayList();
testList.add(1);

根据上面对ArrayList原理的介绍,当调用add方法时,ArrayList会初始化一个默认大小为10的数组,而数组中

保存的Integer(1)实例大小为16 bytes。

则testList占用的内存大小为:

24(ArrayList itselft) + 16(elementData array header) + 10 * 4(elemetData reference) + 16(Integer) = 96 (bytes)

JProfiler中的结果验证了上述分析:

在这里插入图片描述

2. HashMap内存占用

这里分析一个只有一组键值对的HashMap, 结构如下:

Map<Integer, Integer> testMap = Maps.newHashMap();
testMap.put(1, 2);

首先分析HashMap本身的大小。HashMap对象拥有的属性包括:

/**
   * The table, initialized on first use, and resized as
   * necessary. When allocated, length is always a power of two.
   * (We also tolerate length zero in some operations to allow
   * bootstrapping mechanics that are currently not needed.)
   */
  transient Node<K,V>[] table;
 
  /**
   * Holds cached entrySet(). Note that AbstractMap fields are used
   * for keySet() and values().
   */
  transient Set<Map.Entry<K,V>> entrySet;
 
  /**
   * The number of key-value mappings contained in this map.
   */
  transient int size;
 
  /**
   * The number of times this HashMap has been structurally modified
   * Structural modifications are those that change the number of mappings in
   * the HashMap or otherwise modify its internal structure (e.g.,
   * rehash).  This field is used to make iterators on Collection-views of
   * the HashMap fail-fast.  (See ConcurrentModificationException).
   */
  transient int modCount;
 
  /**
   * The next size value at which to resize (capacity * load factor).
   *
   * @serial
   */
  // (The javadoc description is true upon serialization.
  // Additionally, if the table array has not been allocated, this
  // field holds the initial array capacity, or zero signifying
  // DEFAULT_INITIAL_CAPACITY.)
  int threshold;
 
  /**
   * The load factor for the hash table.
   *
   * @serial
   */
  final float loadFactor;

HashMap继承了AbstractMap<K,V>, AbstractMap有两个属性:

transient Set<K>        keySet;
 transient Collection<V> values;

所以一个HashMap对象本身的大小为:

12(header) + 4(table reference) + 4(entrySet reference) + 4(size) + 4(modCount) + 4(threshold) + 8(loadFactor) + 4(keySet reference) + 4(values reference) = 48(bytes)

接着分析testMap实例在总共占用的内存大小。

根据上面对HashMap原理的介绍,可知每对键值对对应一个Node对象。根据上面的Node的数据结构,一个Node对象的大小为:

12(header) + 4(hash reference) + 4(key reference) + 4(value reference)+ 4(next pointer reference) = 28 (padding) -> 32(bytes)

加上Key和Value两个Integer对象,一个Node占用内存总大小为:32 + 2 * 16 = 64(bytes)

JProfiler中结果:

在这里插入图片描述

下面分析HashMap的Node数组的大小。

根据上面HashMap的原理可知,在不指定容量大小的情况下,HashMap初始容量为16,所以testMap的Node[]占用的内存大小为:

16(header) + 16 * 4(Node reference) + 64(Node) = 144(bytes)

JProfile结果:

clipboard.png

所以,testMap占用的内存总大小为:

48(map itself) + 144(Node[]) = 192(bytes)

JProfile结果:

在这里插入图片描述

这里只用一个例子说明如何对HashMap进行占用内存大小的计算,根据HashMap初始化容量的大小,以及扩容的影响,HashMap占用内存大小要进行具体分析,不过思路都是一致的。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Java中的异步回调问题

    Java中的异步回调问题

    这篇文章主要介绍了Java中的异步回调问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-12-12
  • springboot中实现上传文件的功能简单示例

    springboot中实现上传文件的功能简单示例

    这篇文章主要给大家介绍了关于springboot中实现上传文件功能的相关资料,在Spring Boot中实现文件上传下载功能相对简单,文中给出了代码示例,需要的朋友可以参考下
    2023-09-09
  • Java if(boolean)和if(boolean=true)区别解析

    Java if(boolean)和if(boolean=true)区别解析

    这篇文章主要介绍了Java if(boolean)和if(boolean=true)区别解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • Java实现人脸识别登录、注册等功能(最新完整版)

    Java实现人脸识别登录、注册等功能(最新完整版)

    这段时间由于学校实行静态化管理,寝室门和校门都是用了人脸识别的装置,本系列项目从设计到实现源码全部开源免费学习使用,对Java实现人脸识别登录、注册功能感兴趣的朋友一起看看吧
    2022-05-05
  • 解决执行maven命令时提示Process terminated的问题

    解决执行maven命令时提示Process terminated的问题

    这篇文章主要介绍了解决执行maven命令时提示Process terminated的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-09-09
  • java springmvc乱码解决归纳整理详解

    java springmvc乱码解决归纳整理详解

    本篇文章介绍了java 中spring mvc 解决乱码的问题方法实例,需要的朋友可以参考下
    2017-04-04
  • Springboot集成Kafka进行批量消费及踩坑点

    Springboot集成Kafka进行批量消费及踩坑点

    本文主要介绍了Springboot集成Kafka进行批量消费及踩坑点,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-12-12
  • 带你深入了解java-代理机制

    带你深入了解java-代理机制

    Java 有两种代理方式,一种是静态代理,另一种是动态代理。如果我们在代码编译时就确定了被代理的类是哪一个,那么就可以直接使用静态代理;如果不能确定,那么可以使用类的动态加载机制,在代码运行期间加载被代理的类这就是动态代理
    2021-08-08
  • Spring MVC深入学习之启动初始化过程

    Spring MVC深入学习之启动初始化过程

    最近因为工作的原因在学习Spring MVC,为了更深入的学习Spring MVC,下面这篇文章主要给大家介绍了关于Spring MVC深入学习之启动初始化过程的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面来一起看看吧。
    2017-07-07
  • 永中文档在线转换服务Swagger调用说明

    永中文档在线转换服务Swagger调用说明

    这篇文章主要为大家介绍了永中文档在线转换服务Swagger调用说明,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06

最新评论