C++实现LeetCode(85.最大矩形)

 更新时间:2021年07月17日 16:13:34   作者:Grandyang  
这篇文章主要介绍了C++实现LeetCode(85.最大矩形),本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下

[LeetCode] 85. Maximal Rectangle 最大矩形

Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.

Example:

Input:
[
["1","0","1","0","0"],
["1","0","1","1","1"],
["1","1","1","1","1"],
["1","0","0","1","0"]
]
Output: 6

此题是之前那道的 Largest Rectangle in Histogram 的扩展,这道题的二维矩阵每一层向上都可以看做一个直方图,输入矩阵有多少行,就可以形成多少个直方图,对每个直方图都调用 Largest Rectangle in Histogram 中的方法,就可以得到最大的矩形面积。那么这道题唯一要做的就是将每一层都当作直方图的底层,并向上构造整个直方图,由于题目限定了输入矩阵的字符只有 '0' 和 '1' 两种,所以处理起来也相对简单。方法是,对于每一个点,如果是 ‘0',则赋0,如果是 ‘1',就赋之前的 height 值加上1。具体参见代码如下:

解法一:

class Solution {
public:
    int maximalRectangle(vector<vector<char> > &matrix) {
        int res = 0;
        vector<int> height;
        for (int i = 0; i < matrix.size(); ++i) {
            height.resize(matrix[i].size());
            for (int j = 0; j < matrix[i].size(); ++j) {
                height[j] = matrix[i][j] == '0' ? 0 : (1 + height[j]);
            }
            res = max(res, largestRectangleArea(height));
        }
        return res;
    }
    int largestRectangleArea(vector<int>& height) {
        int res = 0;
        stack<int> s;
        height.push_back(0);
        for (int i = 0; i < height.size(); ++i) {
            if (s.empty() || height[s.top()] <= height[i]) s.push(i);
            else {
                int tmp = s.top(); s.pop();
                res = max(res, height[tmp] * (s.empty() ? i : (i - s.top() - 1)));
                --i;
            }
        }
        return res;
    }
};

我们也可以在一个函数内完成,这样代码看起来更加简洁一些,注意这里的 height 初始化的大小为 n+1,为什么要多一个呢?这是因为我们只有在当前位置小于等于前一个位置的高度的时候,才会去计算矩形的面积,假如最后一个位置的高度是最高的,那么我们就没法去计算并更新结果 res 了,所以要在最后再加一个高度0,这样就一定可以计算前面的矩形面积了,这跟上面解法子函数中给 height 末尾加一个0是一样的效果,参见代码如下:

解法二:

class Solution {
public:
    int maximalRectangle(vector<vector<char>>& matrix) {
        if (matrix.empty() || matrix[0].empty()) return 0;
        int res = 0, m = matrix.size(), n = matrix[0].size();
        vector<int> height(n + 1);
        for (int i = 0; i < m; ++i) {
            stack<int> s;
            for (int j = 0; j < n + 1; ++j) {
                if (j < n) {
                    height[j] = matrix[i][j] == '1' ? height[j] + 1 : 0;
                }
                while (!s.empty() && height[s.top()] >= height[j]) {
                    int cur = s.top(); s.pop();
                    res = max(res, height[cur] * (s.empty() ? j : (j - s.top() - 1)));
                }
                s.push(j);
            }
        }
        return res;
    }
};

下面这种方法的思路很巧妙,height 数组和上面一样,这里的 left 数组表示若当前位置是1且与其相连都是1的左边界的位置(若当前 height 是0,则当前 left 一定是0),right 数组表示若当前位置是1且与其相连都是1的右边界的位置再加1(加1是为了计算长度方便,直接减去左边界位置就是长度),初始化为n(若当前 height 是0,则当前 right 一定是n),那么对于任意一行的第j个位置,矩形为 (right[j] - left[j]) * height[j],我们举个例子来说明,比如给定矩阵为:

[ [1, 1, 0, 0, 1], [0, 1, 0, 0, 1], [0, 0, 1, 1, 1], [0, 0, 1, 1, 1], [0, 0, 0, 0, 1] ]

第0行:

h: 1 1 0 0 1

l: 0 0 0 0 4

r: 2 2 5 5 5

第1行:

h: 0 2 0 0 2

l: 0 1 0 0 4 

r: 5 2 5 5 5

第2行:

h: 0 0 1 1 3

l: 0 0 2 2 4 

r: 5 5 5 5 5

第3行:

h: 0 0 2 2 4

l: 0 0 2 2 4 

r: 5 5 5 5 5

第4行:

h: 0 0 0 0 5

l: 0 0 0 0 4

r: 5 5 5 5 5

解法三:

class Solution {
public:
    int maximalRectangle(vector<vector<char>>& matrix) {
        if (matrix.empty() || matrix[0].empty()) return 0;
        int res = 0, m = matrix.size(), n = matrix[0].size();
        vector<int> height(n, 0), left(n, 0), right(n, n);
        for (int i = 0; i < m; ++i) {
            int cur_left = 0, cur_right = n;
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == '1') {
                    ++height[j];
                    left[j] = max(left[j], cur_left);
                } else {
                    height[j] = 0;
                    left[j] = 0;
                    cur_left = j + 1;
                }
            }
            for (int j = n - 1; j >= 0; --j) {
                if (matrix[i][j] == '1') {
                    right[j] = min(right[j], cur_right);
                } else {
                    right[j] = n;
                    cur_right = j;
                }
                res = max(res, (right[j] - left[j]) * height[j]);
            }
        }
        return res;
    }
};

再来看一种解法,这里我们统计每一行的连续1的个数,使用一个数组 h_max, 其中 h_max[i][j] 表示第i行,第j个位置水平方向连续1的个数,若 matrix[i][j] 为0,那对应的 h_max[i][j] 也一定为0。统计的过程跟建立累加和数组很类似,唯一不同的是遇到0了要将 h_max 置0。这个统计好了之后,只需要再次遍历每个位置,首先每个位置的 h_max 值都先用来更新结果 res,因为高度为1也可以看作是矩形,然后我们向上方遍历,上方 (i, j-1) 位置也会有 h_max 值,但是用二者之间的较小值才能构成矩形,用新的矩形面积来更新结果 res,这样一直向上遍历,直到遇到0,或者是越界的时候停止,这样就可以找出所有的矩形了,参见代码如下:

解法四:

class Solution {
public:
    int maximalRectangle(vector<vector<char>>& matrix) {
        if (matrix.empty() || matrix[0].empty()) return 0;
        int res = 0, m = matrix.size(), n = matrix[0].size();
        vector<vector<int>> h_max(m, vector<int>(n));
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == '0') continue;
                if (j > 0) h_max[i][j] = h_max[i][j - 1] + 1;
                else h_max[i][0] = 1;
            }
        }
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (h_max[i][j] == 0) continue;
                int mn = h_max[i][j];
                res = max(res, mn);
                for (int k = i - 1; k >= 0 && h_max[k][j] != 0; --k) {
                    mn = min(mn, h_max[k][j]);
                    res = max(res, mn * (i - k + 1));
                }
            }
        }
        return res;
    }
};

到此这篇关于C++实现LeetCode(85.最大矩形)的文章就介绍到这了,更多相关C++实现最大矩形内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 基于C语言实现三子棋小游戏

    基于C语言实现三子棋小游戏

    这篇文章主要为大家详细介绍了基于C语言实现三子棋小游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-11-11
  • C语言的编程之美之内存函数

    C语言的编程之美之内存函数

    这篇文章主要介绍了C语言全部内存操作函数的实现详细讲解,作者用图文代码实例讲解的很清晰,有感兴趣的同学可以研究下
    2021-09-09
  • 算法之排列算法与组合算法详解

    算法之排列算法与组合算法详解

    这篇文章主要介绍了算法之排列算法与组合算法详解,本文以字典序法、递归法为例讲解了排列算法、全组合算法等,需要的朋友可以参考下
    2014-08-08
  • C++ class和struct到底有什么区别详解

    C++ class和struct到底有什么区别详解

    这篇文章主要介绍了C++ class和struct到底有什么区别详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • 浅谈C++中派生类对象的内存布局

    浅谈C++中派生类对象的内存布局

    下面小编就为大家带来一篇浅谈C++中派生类对象的内存布局。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2016-12-12
  • 浅析C语言中strtol()函数与strtoul()函数的用法

    浅析C语言中strtol()函数与strtoul()函数的用法

    这篇文章主要介绍了浅析C语言中strtol()函数与strtoul()函数的用法,注意其将字符串转换成long型的区别,需要的朋友可以参考下
    2015-08-08
  • 一文带你初识C++和命名空间

    一文带你初识C++和命名空间

    C++是在C语言基础上发展的面向对象语言,C++支持过程化、面向对象及抽象数据类型的程序设计,C++的发展包括多个版本,下面这篇文章主要介绍了一文带你初识C++和命名空间的相关资料,需要的朋友可以参考下
    2024-10-10
  • 老生常谈c++中的静态成员

    老生常谈c++中的静态成员

    有时候需要类的一些成员与类本身相关联,而不是与类的每个对象相关联。比如类的所有对象都要共享的变量,这个时候我们就要用到类的静态成员,今天通过实例代码给大家详细介绍,需要的朋友参考下吧
    2021-07-07
  • 深入理解C++函数栈帧

    深入理解C++函数栈帧

    本文主要介绍了C++函数栈帧,详细的介绍了C++函数栈帧的概念以及使用,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-07-07
  • C++变量引用的概念介绍

    C++变量引用的概念介绍

    这篇文章主要介绍了C++变量引用的概念介绍,简单提到了与指针概念的不同,通过代码场景分析给大家介绍的非常详细,需要的朋友可以参考下
    2021-08-08

最新评论