C#中使用jieba.NET、WordCloudSharp制作词云图的步骤

 更新时间:2021年07月25日 08:45:46   作者:time-flies  
之前一篇文章介绍的是使用Python的jieba、wordcloud的库生成词云图,本文则介绍在C#中如何使用jieba.NET、WordCloudSharp库生成词云图,感兴趣的朋友一起看看吧

词云简介

“词云”由美国西北大学新闻学副教授、新媒体专业主任里奇·戈登(Rich Gordon)于2006年最先使用,是通过形成“关键词云层”或“关键词渲染”,对文本中出现频率较高的“关键词”的视觉上的突出。
网上大部分文章介绍的是使用Python的jieba、wordcloud的库生成词云图,本文则介绍在C#中如何使用jieba.NET、WordCloudSharp库生成词云图,后者是前者的.NET实现。

准备工作

创建一个C#的控制台项目,通过NuGet添加引用对jieba.NET、WordCloudSharp的引用,使用方法可以参考以下链接:

安装之后,在packages\jieba.NET目录下找到Resources目录,将整个Resources目录拷贝到程序集所在目录,这里面是jieba.NET运行所需的词典及其它数据文件。

基本算法

算法主要步骤如下:

  • 提取关键词:基于TF-IDF算法、TextRank算法提取文本的关键词,按权重大小选取部分关键词。
  • 统计关键词词频:先将文本分词,统计每个词的词频,再筛选出关键词的词频。
  • 生成词云图:根据关键词及其词频信息在蒙版图片的基础上生成词图。

注:本文采用TF-IDF算法提取关键词,蒙版图目前只支持黑白图片。

TF-IDF(词频-逆文档频率)算法是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

算法实现

使用JiebaNet.Analyser.TfidfExtractor.ExtractTagsWithWeight(string text, int count = 20, IEnumerable allowPos = null)从指定文本中抽取关键词的同时得到其权重,代码如下:

/// <summary>
/// 从指定文本中抽取关键词的同时得到其权重
/// </summary>
/// <param name="text"></param>
/// <returns></returns>
static WordWeightPair[] ExtractTagsWithWeight(string text)
{
    var extractor = new TfidfExtractor();
    var wordWeight = extractor.ExtractTagsWithWeight(text, 50);
    StringBuilder sbr = new StringBuilder();
    sbr.Append("词语");
    sbr.Append(",");
    sbr.Append("权重");
    sbr.AppendLine(",");
    foreach (var item in wordWeight)
    {
        sbr.Append(item.Word);
        sbr.Append(",");
        sbr.Append(item.Weight);
        sbr.AppendLine(",");
    }
    string filename = "关键词权重统计.csv";
    File.WriteAllText(filename, sbr.ToString(), Encoding.UTF8);
    Console.WriteLine("关键词提取完成:" + filename);
    return wordWeight.ToArray();
}

使用JiebaNet.Segmenter.Common下的Counter类统计词频,其实现来自Python标准库的Counter类(具体接口和实现细节略有不同),代码如下:

/// <summary>
/// 分词并统计词频:默认为精确模式,同时也使用HMM模型
/// </summary>
/// <param name="text"></param>
/// <param name="wordWeightAry"></param>
/// <returns></returns>
static KeyValuePair<string, int>[] Counter(string text, WordWeightPair[] wordWeightAry)
{
    var segmenter = new JiebaSegmenter();
    var segments = segmenter.Cut(text);
    var freqs = new Counter<string>(segments);
    KeyValuePair<string, int>[] countAry = new KeyValuePair<string, int>[wordWeightAry.Length];
    for (int i = 0; i < wordWeightAry.Length; i++)
    {
        string key = wordWeightAry[i].Word;
        countAry[i] = new KeyValuePair<string, int>(key, freqs[key]);
    }
    StringBuilder sbr = new StringBuilder();
    sbr.Append("词语");
    sbr.Append(",");
    sbr.Append("词频");
    sbr.AppendLine(",");
    foreach (var pair in countAry)
    {
        sbr.Append(pair.Key);
        sbr.Append(",");
        sbr.Append(pair.Value);
        sbr.AppendLine(",");
    }
    string filename = "词频统计结果.csv";
    File.WriteAllText(filename, sbr.ToString(), Encoding.UTF8);
    Console.WriteLine("词频统计完成:" + filename);
    return countAry;
}

使用WordCloudSharp生成词云图,蒙版图必须使用黑白图片,记得手动引用System.Drawing,代码如下:

/// <summary>
/// 创建词云图
/// </summary>
/// <param name="countAry"></param>
static void CreateWordCloud(KeyValuePair<string, int>[] countAry)
{            
    string markPath = "mask.jpg";
    string resultPath = "result.jpg";
    Console.WriteLine("开始生成图片,读取蒙版:" + markPath);
    Image mask = Image.FromFile(markPath);
    //使用蒙版图片
    var wordCloud = new WordCloud(mask.Width, mask.Height, mask: mask, allowVerical: true, fontname: "YouYuan");
    //不使用蒙版图片
    //var wordCloud = new WordCloud(1000, 1000,false, null,-1,1,null, false);
    var result = wordCloud.Draw(countAry.Select(it => it.Key).ToList(), countAry.Select(it => it.Value).ToList());
    result.Save(resultPath);
    Console.WriteLine("图片生成完成,保存图片:" + resultPath);
}

运行测试

以本文为分析文本生成词云图,代码如下:

static void Main(string[] args)
{
    string text = File.ReadAllText("待处理数据.txt");
    var wordWeight = ExtractTagsWithWeight(text);
    var wordFreqs = Counter(text, wordWeight);
    CreateWordCloud(wordFreqs);
    Console.Read();
}

蒙版图如下:

词云图如下(使用蒙版):

词云图如下(不使用蒙版):

在得到关键词的词频信息后,通过在线工具网站生成词云图片会更加方便一点,如词云文字图悦等。

参考资料

jieba.NET是jieba中文分词的.NET版本(C#实现)

TF-IDF算法和TextRank算法的分析比较

Python生成词云图

到此这篇关于C#中使用jieba.NET、WordCloudSharp制作词云图的文章就介绍到这了,更多相关C#制作词云图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • C#中查找Dictionary中的重复值的方法

    C#中查找Dictionary中的重复值的方法

    这篇文章主要介绍了C#中查找Dictionary中的重复值的方法,需要的朋友可以参考下
    2015-09-09
  • C语言使用getch()读取方向键

    C语言使用getch()读取方向键

    getch()是编程中所用的函数,这个函数是一个不回显函数,当用户按下某个字符时,函数自动读取,无需按回车,有的C语言命令行程序会用到此函数做游戏,但是这个函数并非标准函数,要注意移植性
    2021-07-07
  • 基于WPF实现一个简单的音频播放动画控件

    基于WPF实现一个简单的音频播放动画控件

    这篇文章主要介绍了如何利用WPF实现一个简单的音频播放动画控件,文中的示例代码讲解详细,对我们学习或工作有一定帮助,需要的可以参考一下
    2022-07-07
  • c# 如何将字符串转换为大写或小写

    c# 如何将字符串转换为大写或小写

    这篇文章主要介绍了c# 如何将字符串转换为大写或小写,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-06-06
  • C#中如何转换十进制、十六进制、八进制和二进制基数

    C#中如何转换十进制、十六进制、八进制和二进制基数

    文章介绍了如何使用Convert类的ToInt64和ToString方法进行不同进制之间的转换,并提供了具体的代码示例,通过将16替换为其他进制数,可以实现八进制和二进制的转换
    2025-01-01
  • C#中的序列化与反序列化方式

    C#中的序列化与反序列化方式

    本文介绍了C#中的序列化和反序列化概念、目的及其在不同场景中的应用,文章详细讲解了二进制序列化、XML序列化和JSON序列化的方法和特点,并提供了一些示例代码
    2024-12-12
  • C#利用Aspose.PDF实现PDF转EPUB的完整指南

    C#利用Aspose.PDF实现PDF转EPUB的完整指南

    在 .NET 开发中,Aspose.PDF 是一个强大的库,能够帮助我们处理 PDF 文件的各种任务,包括将 PDF 转换为其他格式,如 EPUB,本文将介绍如何使用 Aspose.PDF 在 C# 中实现将 PDF 转换为 EPUB 的功能,需要的朋友可以参考下
    2025-02-02
  • C#开发微信门户及应用(3) 文本消息和图文消息应答

    C#开发微信门户及应用(3) 文本消息和图文消息应答

    这篇文章主要为大家详细介绍了C#开发微信门户及应用第二篇,微信文本消息和图文消息的应答,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-06-06
  • C#实现折半查找算法

    C#实现折半查找算法

    这篇文章介绍了C#实现折半查找的算法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-08-08
  • C#实现获取MAC地址的方法

    C#实现获取MAC地址的方法

    这篇文章主要介绍了C#实现获取MAC地址的方法,很实用的功能,需要的朋友可以参考下
    2014-08-08

最新评论