C++实现LeetCode(209.最短子数组之和)

 更新时间:2021年08月09日 16:30:05   作者:Grandyang  
这篇文章主要介绍了C++实现LeetCode(209.最短子数组之和),本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下

[LeetCode] 209. Minimum Size Subarray Sum 最短子数组之和

Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.

Example: 

Input: s = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: the subarray [4,3] has the minimal length under the problem constraint.

Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).  

Credits:
Special thanks to @Freezen for adding this problem and creating all test cases.

这道题给定了我们一个数字,让求子数组之和大于等于给定值的最小长度,注意这里是大于等于,不是等于。跟之前那道 Maximum Subarray 有些类似,并且题目中要求实现 O(n) 和 O(nlgn) 两种解法,那么先来看 O(n) 的解法,需要定义两个指针 left 和 right,分别记录子数组的左右的边界位置,然后让 right 向右移,直到子数组和大于等于给定值或者 right 达到数组末尾,此时更新最短距离,并且将 left 像右移一位,然后再 sum 中减去移去的值,然后重复上面的步骤,直到 right 到达末尾,且 left 到达临界位置,即要么到达边界,要么再往右移动,和就会小于给定值。代码如下:

解法一:

// O(n)
class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        if (nums.empty()) return 0;
        int left = 0, right = 0, sum = 0, len = nums.size(), res = len + 1;
        while (right < len) {
            while (sum < s && right < len) {
                sum += nums[right++];
            }
            while (sum >= s) {
                res = min(res, right - left);
                sum -= nums[left++];
            }
        }
        return res == len + 1 ? 0 : res;
    }
};

同样的思路,我们也可以换一种写法,参考代码如下:

解法二:

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int res = INT_MAX, left = 0, sum = 0;
        for (int i = 0; i < nums.size(); ++i) {
            sum += nums[i];
            while (left <= i && sum >= s) {
                res = min(res, i - left + 1);
                sum -= nums[left++];
            }
        }
        return res == INT_MAX ? 0 : res;
    }
};

下面再来看看 O(nlgn) 的解法,这个解法要用到二分查找法,思路是,建立一个比原数组长一位的 sums 数组,其中 sums[i] 表示 nums 数组中 [0, i - 1] 的和,然后对于 sums 中每一个值 sums[i],用二分查找法找到子数组的右边界位置,使该子数组之和大于 sums[i] + s,然后更新最短长度的距离即可。代码如下:

解法三:

// O(nlgn)
class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int len = nums.size(), sums[len + 1] = {0}, res = len + 1;
        for (int i = 1; i < len + 1; ++i) sums[i] = sums[i - 1] + nums[i - 1];
        for (int i = 0; i < len + 1; ++i) {
            int right = searchRight(i + 1, len, sums[i] + s, sums);
            if (right == len + 1) break;
            if (res > right - i) res = right - i;
        }
        return res == len + 1 ? 0 : res;
    }
    int searchRight(int left, int right, int key, int sums[]) {
        while (left <= right) {
            int mid = (left + right) / 2;
            if (sums[mid] >= key) right = mid - 1;
            else left = mid + 1;
        }
        return left;
    }
};

我们也可以不用为二分查找法专门写一个函数,直接嵌套在 for 循环中即可,参加代码如下:

解法四:

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int res = INT_MAX, n = nums.size();
        vector<int> sums(n + 1, 0);
        for (int i = 1; i < n + 1; ++i) sums[i] = sums[i - 1] + nums[i - 1];
        for (int i = 0; i < n; ++i) {
            int left = i + 1, right = n, t = sums[i] + s;
            while (left <= right) {
                int mid = left + (right - left) / 2;
                if (sums[mid] < t) left = mid + 1;
                else right = mid - 1;
            }
            if (left == n + 1) break;
            res = min(res, left - i);
        }
        return res == INT_MAX ? 0 : res;
    }
};

讨论:本题有一个很好的 Follow up,就是去掉所有数字是正数的限制条件,而去掉这个条件会使得累加数组不一定会是递增的了,那么就不能使用二分法,同时双指针的方法也会失效,只能另辟蹊径了。其实博主觉得同时应该去掉大于s的条件,只保留 sum=s 这个要求,因为这样就可以在建立累加数组后用 2sum 的思路,快速查找 s-sum 是否存在,如果有了大于的条件,还得继续遍历所有大于 s-sum 的值,效率提高不了多少。

Github 同步地址:

https://github.com/grandyang/leetcode/issues/209

类似题目:

Minimum Window Substring

参考资料:

https://leetcode.com/problems/minimum-size-subarray-sum/

https://leetcode.com/problems/minimum-size-subarray-sum/discuss/59090/C%2B%2B-O(n)-and-O(nlogn)

https://leetcode.com/problems/minimum-size-subarray-sum/discuss/59078/Accepted-clean-Java-O(n)-solution-(two-pointers)

到此这篇关于C++实现LeetCode(209.最短子数组之和)的文章就介绍到这了,更多相关C++实现最短子数组之和内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • c++ class中成员与分配内存的问题详解

    c++ class中成员与分配内存的问题详解

    很多人都知道C++类是由结构体发展得来的,所以他们的成员变量(C语言的结构体只有成员变量)的内存分配机制是一样的,下面这篇文章主要给大家介绍了关于c++ class中成员与分配内存问题的相关资料,需要的朋友可以参考下
    2021-10-10
  • Qt+OpenCV利用帧差法实现车辆识别

    Qt+OpenCV利用帧差法实现车辆识别

    所谓帧差法也就是对连续图像帧做差分运算,其结果与定义好的阈值比较,若大于阈值则为运动目标值为1,否则值为0 。本文将利用帧差法实现车辆识别,感兴趣的可以了解一下
    2022-08-08
  • Qt扫盲篇之QRegExp正则匹配类总结

    Qt扫盲篇之QRegExp正则匹配类总结

    这篇文章主要给大家介绍了关于Qt扫盲篇之QRegExp正则匹配类总结的相关资料,QRegExp是Qt框架中的一个类,用于进行正则表达式的匹配和处理,它提供了多种模式来匹配不同的字符串,需要的朋友可以参考下
    2023-12-12
  • C++基于对话框的程序的框架实例

    C++基于对话框的程序的框架实例

    这篇文章主要介绍了C++基于对话框的程序的框架,以实例形式讲述了C++对话框程序框架,有助于深入理解基于C++的Windows程序设计,需要的朋友可以参考下
    2014-10-10
  • 带你粗略了解C++流的读写文件

    带你粗略了解C++流的读写文件

    这篇文章主要为大家总结了C++中输入输出流及文件流操作,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能给你带来帮助
    2021-08-08
  • C++归并算法实例

    C++归并算法实例

    这篇文章主要介绍了C++归并算法,实例分析了C++实现基于归并算法合并线性表的相关技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-07-07
  • C++中std::construct()与std::destroy()的使用

    C++中std::construct()与std::destroy()的使用

    std::construct()和std::destroy()是C++ STL中的函数模板,用于在已分配的存储区域中构造或销毁对象,本文主要介绍了C++中std::construct()与std::destroy()的使用,感兴趣的可以了解一下
    2024-02-02
  • c/c++基础简单易懂的快速排序算法

    c/c++基础简单易懂的快速排序算法

    这篇文章主要为大家介绍了c/c++基础非常简单易懂的快速排序算法,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2021-11-11
  • C语言员工信息管理系统源代码

    C语言员工信息管理系统源代码

    这篇文章主要为大家详细介绍了C语言员工信息管理系统源代码,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-12-12
  • QT实现秒表项目

    QT实现秒表项目

    这篇文章主要为大家详细介绍了QT实现秒表项目,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-08-08

最新评论