C语言 module_init函数与initcall案例详解

 更新时间:2021年08月25日 09:13:37   作者:penghan  
这篇文章主要介绍了C语言 module_init函数与initcall案例详解,本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下

module_init这个函数对做驱动的人来说肯定很熟悉,这篇文章用来跟一下这个函数的实现。

在include/linux/init.h里面有module_init的定义,自然,因为一个module可以在内核启动时自动加载进内核,也可以由我们手动在需要时加载进内核,基于这种场景,内核使用了MODULE这个宏,见代码:

#ifndef MODULE

#ifndef __ASSEMBLY__

...

#define __define_initcall(level,fn,id) \
    static initcall_t __initcall_##fn##id __attribute_used__ \
    __attribute__((__section__(".initcall" level ".init"))) = fn

#define pure_initcall(fn)        __define_initcall("0",fn,0)

#define core_initcall(fn)        __define_initcall("1",fn,1)
#define core_initcall_sync(fn)        __define_initcall("1s",fn,1s)
#define postcore_initcall(fn)        __define_initcall("2",fn,2)
#define postcore_initcall_sync(fn)    __define_initcall("2s",fn,2s)
#define arch_initcall(fn)        __define_initcall("3",fn,3)
#define arch_initcall_sync(fn)        __define_initcall("3s",fn,3s)
#define subsys_initcall(fn)        __define_initcall("4",fn,4)
#define subsys_initcall_sync(fn)    __define_initcall("4s",fn,4s)
#define fs_initcall(fn)            __define_initcall("5",fn,5)
#define fs_initcall_sync(fn)        __define_initcall("5s",fn,5s)
#define rootfs_initcall(fn)        __define_initcall("rootfs",fn,rootfs)
#define device_initcall(fn)        __define_initcall("6",fn,6)
#define device_initcall_sync(fn)    __define_initcall("6s",fn,6s)
#define late_initcall(fn)        __define_initcall("7",fn,7)
#define late_initcall_sync(fn)        __define_initcall("7s",fn,7s)

#define __initcall(fn) device_initcall(fn)

#define module_init(x)    __initcall(x);

#else /* MODULE */

...

#define module_init(initfn)                    \
    static inline initcall_t __inittest(void)        \
    { return initfn; }                    \
    int init_module(void) __attribute__((alias(#initfn)));...

当我们使用make menuconfig来配置内核时,将某个module配置为m时,MODULE这个宏就被定义了,而当配置为y时,则没有定义,具体的实现在kernel的根Makefile(-DMODULE)里。

现在我们先看下第一种情况,即把module配置为m的情况,即else分支的代码。

先看下initcall_t的定义:

typedef int (*initcall_t)(void);

它是一个接收参数为void, 返回值为int类型的函数指针。这样就明白了,其实前两句话只是做了一个检测,当你传进来的函数指针的参数和返回值与initcall_t不一致时,就会有告警。
重点在第三句,是使用alias将initfn变名为init_module,我们知道,kernel 2.4版本之前都是用init_module来加载模块的。这样做应该是为了不用修改load module的那块代码吧。

当我们调用insmod将module加载进内核时,会去找init_module作为入口地址,即是我们的initfn, 这样module就被加载了。

取nvme.ko为例,我们可以通过objdump -t nvme.ko 查看该模块的符号表,发现init_module和nvme_init指向同一个偏移量。如下:

现在看第二种情况,即我们选择将模块编进内核,让它随内核启动而加载。

这种情况下module_init最终会调用__define_initcall宏,这个宏的作用就是将我们的初始化函数放在".initcall" level ".init"中。

在这里是.initcall6.init, 它的位置可以在Vmlinux.lds.h里面找到:

#define INITCALLS                            \
      *(.initcall0.init)                        \
      *(.initcall0s.init)                        \
      *(.initcall1.init)                        \
      *(.initcall1s.init)                        \
      *(.initcall2.init)                        \
      *(.initcall2s.init)                        \
      *(.initcall3.init)                        \
      *(.initcall3s.init)                        \
      *(.initcall4.init)                        \
      *(.initcall4s.init)                        \
      *(.initcall5.init)                        \
      *(.initcall5s.init)                        \
    *(.initcallrootfs.init)                        \
      *(.initcall6.init)                        \
      *(.initcall6s.init)                        \
      *(.initcall7.init)                        \
      *(.initcall7s.init)

而INITCALL可以在vmlinux.lds.S里面找到:

.init.text : AT(ADDR(.init.text) - LOAD_OFFSET) {
      __init_begin = .;
    _sinittext = .;
    *(.init.text)
    _einittext = .;
  }
  .init.data : AT(ADDR(.init.data) - LOAD_OFFSET) { *(.init.data) }
  . = ALIGN(16);
  .init.setup : AT(ADDR(.init.setup) - LOAD_OFFSET) {
      __setup_start = .;
    *(.init.setup)
      __setup_end = .;
   }
  .initcall.init : AT(ADDR(.initcall.init) - LOAD_OFFSET) {
      __initcall_start = .;
    INITCALLS
      __initcall_end = .;
  }
  .con_initcall.init : AT(ADDR(.con_initcall.init) - LOAD_OFFSET) {
      __con_initcall_start = .;
    *(.con_initcall.init)
      __con_initcall_end = .;
  }

上面贴出来的代码是系统启动时存放初始化数据的地方,执行完成后不再需要,会被释放掉。根据上面的内存布局,可以列出初始化宏和内存的对应关系:

_init_begin              -------------------

                        |  .init.text       | ---- __init

                        |-------------------|

                        |  .init.data       | ---- __initdata

_setup_start       |-------------------|

                        |  .init.setup      | ---- __setup_param

__initcall_start   |-------------------|

                        |  .initcall1.init  | ---- core_initcall

                        |-------------------|

                        |  .initcall2.init  | ---- postcore_initcall

                        |-------------------|

                        |  .initcall3.init  | ---- arch_initcall

                        |-------------------|

                        |  .initcall4.init  | ---- subsys_initcall

                        |-------------------|

                        |  .initcall5.init  | ---- fs_initcall

                        |-------------------|

                        |  .initcall6.init  | ---- device_initcall

                        |-------------------|

                        |  .initcall7.init  | ---- late_initcall

__initcall_end    |-------------------|

                        |                   |

                        |    ... ... ...    |

                        |                   |

__init_end              -------------------

而各个initcall被调用的地方在kernel_init-》do_basic_setup-》do_initcalls里面:

static void __init do_initcalls(void)
{
    initcall_t *call;
    int count = preempt_count();

    for (call = __initcall_start; call < __initcall_end; call++) {
        ktime_t t0, t1, delta;
        char *msg = NULL;
        char msgbuf[40];
        int result;

        if (initcall_debug) {
            printk("Calling initcall 0x%p", *call);
            print_fn_descriptor_symbol(": %s()",
                    (unsigned long) *call);
            printk("\n");
            t0 = ktime_get();
        }

        result = (*call)();
...
}

到此这篇关于C语言 module_init函数与initcall案例详解的文章就介绍到这了,更多相关C语言 module_init函数与initcall内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • C++实现新年贺卡程序

    C++实现新年贺卡程序

    这篇文章主要为大家详细介绍了C++实现贺卡程序,C++应用程序编写的雪花贺卡,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-04-04
  • C++数据结构之哈希表的实现

    C++数据结构之哈希表的实现

    哈希表,即散列表,可以快速地存储和查询记录。这篇文章主要为大家详细介绍了C++数据结构中哈希表的实现,感兴趣的小伙伴可以了解一下
    2023-03-03
  • C++ Boost EnableIf函数使用介绍

    C++ Boost EnableIf函数使用介绍

    Boost是为C++语言标准库提供扩展的一些C++程序库的总称。Boost库是一个可移植、提供源代码的C++库,作为标准库的后备,是C++标准化进程的开发引擎之一,是为C++语言标准库提供扩展的一些C++程序库的总称
    2022-11-11
  • String类的写时拷贝实例

    String类的写时拷贝实例

    下面小编就为大家带来一篇String类的写时拷贝实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-01-01
  • C/C++的全缓冲、行缓冲和无缓冲

    C/C++的全缓冲、行缓冲和无缓冲

    这篇文章主要介绍了C/C++的全缓冲、行缓冲和无缓冲的相关知识,帮助大家更好的理解和学习c/c++,感兴趣的朋友可以了解下
    2020-08-08
  • C语言printf详细解析

    C语言printf详细解析

    C中格式字符串printf()的一般形式为: %[标志][输出最小宽度][.精度][长度]类型, 其中方括号[]中的项为可选项。各项的意义介绍如下
    2013-09-09
  • VS2019安装配置MFC(安装vs2019时没有安装mfc)

    VS2019安装配置MFC(安装vs2019时没有安装mfc)

    这篇文章主要介绍了VS2019安装配置MFC(安装vs2019时没有安装mfc),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-03-03
  • C语言用递归函数对素数进行判断流程

    C语言用递归函数对素数进行判断流程

    素数判断是编程语言学习过程中一个老生常谈的话题,而它的实现也有多种算法,包括经典的试除法(以及试除法的几种优化),进阶的素数表筛选法,埃拉托斯特尼筛法和欧拉筛法(以及它们的优化)等。对以上算法感兴趣的朋友们,不妨搜索“素数判断的N种境界”来学习了解
    2022-09-09
  • C字符串函数对应的C++ string操作详解

    C字符串函数对应的C++ string操作详解

    在本篇文章里小编给大家整理的是一篇关于C字符串函数对应的C++ string操作知识点内容,有兴趣的朋友们学习下。
    2020-01-01
  • C++ Boost shared_ptr共享指针详细讲解

    C++ Boost shared_ptr共享指针详细讲解

    shared_ptr是一个标准的共享所有权的智能指针,允许多个指针指向同一个对象,定义在memory文件中,命名空间为std,这篇文章主要介绍了C++ shared_ptr使用,需要的朋友可以参考下
    2022-11-11

最新评论