Java并发之原子性 有序性 可见性及Happen Before原则

 更新时间:2021年09月24日 08:48:14   作者:没头脑遇到不高兴  
一提到happens-before原则,就让人有点“丈二和尚摸不着头脑”。这个涵盖了整个JMM中可见性原则的规则,究竟如何理解,把我个人一些理解记录下来。下面可以和小编一起学习Java 并发四个原则

1.原子性(Atomicity)

原子性指的是一个操作是不可中断的,即使是在多线程环境下,一个操作一旦开始就不会被其他线程影响。由Java内存模型来直接保证的原子性变量操作包括read、load、assign、use、store和write这六个,我们大致可以认为,基本数据类型的访问、读写都是具备原子性的(例外就是long和double的非原子性协定)。如果应用场景需要一个更大范围的原子性保证(经常会遇到),Java内存模型还提供了lock和unlock操作来满足这种需求,尽管虚拟机未把lock和unlock操作直接开放给用户使用,但是却提供了更高层次的字节码指令monitorenter和monitorexit来隐式地使用这两个操作。这两个字节码指令反映到Java代码中就是同步块——synchronized关键字,因此在synchronized块之间的操作也具备原子性。

long和double的非原子性协定”(Non-Atomic Treatment of double and long Variables):

在java中,对基本数据类型的变量的读取和赋值操作是原子性操作有点要注意的是,对于32位系统的来说,long类型数据和double类型数据(对于基本数据类型,byte, short, int, float, boolean, char读写是原子操作),它们的读写并非原子性的,也就是说如果存在两条线程同时对long类型或者double类型的数据进行读写是存在相互干扰的,因为对于32位虚拟机来说,每次原子读写是32位的,而long和double则是64位的存储单元,这样会导致一个线程在写时,操作完前32位的原子操作后,轮到B线程读取时,恰好只读取到了后32位的数据,这样可能会读取到一个既非原值又不是线程修改值的变量,它可能是“半个变量”的数值,即64位数据被两个线程分成了两次读取。但也不必太担心,因为读取到“半个变量”的情况比较少见,至少在目前的商用的虚拟机中,几乎都把64位的数据的读写操作作为原子操作来执行。

  • X=10; //原子性(简单的读取、将数字赋值给变量)
  • Y = x; //变量之间的相互赋值,不是原子操作
  • X++; //对变量进行计算操作
  • X = x+1;

2.可见性(Visibility)

可见性就是指当一个线程修改了共享变量的值时,其他线程能够立即得知这个修改。上文在讲解volatile变量的时候我们已详细讨论过这一点。Java内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方式来实现可见性的,无论是普通变量还是volatile变量都是如此。普通变量与volatile变量的区别是,volatile的特殊规则保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。因此我们可以说volatile保证了多线程操作时变量的可见性,而普通变量则不能保证这一点。

除了volatile之外,Java还有两个关键字能实现可见性,它们是synchronized和final。同步块的可见性是由“对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write操作)”这条规则获得的。而final关键字的可见性是指:被final修饰的字段在构造器中一旦被初始化完成,并且构造器没有把“this”的引用传递出去(this引用逃逸是一件很危险的事情,其他线程有可能通过这个引用访问到“初始化了一半”的对象),那么在其他线程中就能看见final字段的值。

如下面所示,变量i与j都具备可见性,它们无须同步就能被其他线程正确访问。

public static final int i;
public final int j;
static {
	i = 0;
	// 省略后续动作
}
{
	// 也可以选择在构造函数中初始化
	j = 0;
	// 省略后续动作
}

3.有序性(Ordering)

Java内存模型的有序性在前面讲解volatile时也比较详细地讨论过了,Java程序中天然的有序性可以总结为一句话:如果在本线程内观察,所有的操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。前半句是指“线程内似表现为串行的语义”(Within-Thread As-If-Serial Semantics),后半句是指“指令重排序”现象和“工作内存与主内存同步延迟”现象。Java语言提供了volatile和synchronized两个关键字来保证线程之间操作的有序性,volatile关键字本身就包含了禁止指令重排序的语义,而synchronized则是由“一个变量在同一个时刻只允许一条线程对其进行lock操作”这条规则获得的,这个规则决定了持有同一个锁的两个同步块只能串行地进入。

volatile用来保证可见性和有序性,synchronized则对三种特性都可以保证。

4.happens-before(先行发生)原则

只靠sychronized和volatile关键字来保证原子性、可见性以及有序性,那么编写并发程序可能会显得十分麻烦,幸运的是,从JDK 5开始,Java使用新的JSR-133内存模型,提供了
happens-before 原则来辅助保证程序执行的原子性、可见性以及有序性的问题,它是判断数据是否存在竞争、线程是否安全的依据。

先行发生是Java内存模型中定义的两项操作之间的偏序关系,比如说操作A先行发生于操作B,其实就是说在发生操作B之前,操作A产生的影响能被操作B观察到,“影响”包括修改了内存中共享变量的值、发送了消息、调用了方法等。下面三个伪代码:

// 以下操作在线程A中执行
i = 1;
// 以下操作在线程B中执行
j = i;
// 以下操作在线程C中执行
i = 2;

假设线程A中的操作“i=1”先行发生于线程B的操作“j=i”,那我们就可以确定在线程B的操作执行后,变量j的值一定是等于1,得出这个结论的依据有两个:一是根据先行发生原则,“i=1”的结果可以被观察到;二是线程C还没登场,线程A操作结束之后没有其他线程会修改变量i的值。现在再来考虑线程C,我们依然保持线程A和B之间的先行发生关系,而C出现在线程A和B的操作之间,但是C与B没有先行发生关系,那j的值会是多少呢?答案是不确定!1和2都有可能,因为线程C对变量i的影响可能会被线程B观察到,也可能不会,这时候线程B就存在读取到过期数据的风险,不具备多线程安全性。

下面是Java内存模型下一些“天然的”先行发生关系,这些先行发生关系无须任何同步器协助就已经存在,可以在编码中直接使用。如果两个操作之间的关系不在此列,并且无法从下列规则推导出来,则它们就没有顺序性保障,虚拟机可以对它们随意地进行重排序。

  • 程序次序规则(Program Order Rule):在一个线程内,按照控制流顺序,书写在前面的操作先行发生于书写在后面的操作。注意,这里说的是控制流顺序而不是程序代码顺序,因为要考虑分支、循环等结构。
  • 管程锁定规则(Monitor Lock Rule):一个unlock操作先行发生于后面对同一个锁的lock操作。这里必须强调的是“同一个锁”,而“后面”是指时间上的先后。
  • volatile变量规则(Volatile Variable Rule):对一个volatile变量的写操作先行发生于后面对这个变量的读操作,这里的“后面”同样是指时间上的先后。
  • 线程启动规则(Thread Start Rule):Thread对象的start()方法先行发生于此线程的每一个动作。
  • 线程终止规则(Thread Termination Rule):线程中的所有操作都先行发生于对此线程的终止检测,我们可以通过Thread::join()方法是否结束、Thread::isAlive()的返回值等手段检测线程是否已经终止执行。
  • 线程中断规则(Thread Interruption Rule):对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过Thread::interrupted()方法检测到是否有中断发生。
  • 对象终结规则(Finalizer Rule):一个对象的初始化完成(构造函数执行结束)先行发生于它的finalize()方法的开始。
  • 传递性(Transitivity):如果操作A先行发生于操作B,操作B先行发生于操作C,那就可以得出操作A先行发生于操作C的结论。

一个操作“时间上的先发生”不代表这个操作会是“先行发生”。如果一个操作“先行发生”,这个操作也不代表是“时间上的先发生”的,因为存在指令重排的可能性。时间先后顺序与先行发生原则之间基本没有因果关系,所以我们衡量并发安全问题的时候不要受时间顺序的干扰,一切必须以先行发生原则为准

参考《深入理解Java虚拟机第三版周志明》

到此这篇关于Java并发之原子性 有序性 可见性及Happen Before原则的文章就介绍到这了,更多相关Java 并发原则内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 使用maven实现redis与idea的连接问题

    使用maven实现redis与idea的连接问题

    这篇文章主要介绍了使用maven实现redis与idea的连接问题,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-07-07
  • 简单了解java获取类的3种方式

    简单了解java获取类的3种方式

    这篇文章主要介绍了java获取类的3种方式详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-10-10
  • SpringBoot如何集成PageHelper分页功能

    SpringBoot如何集成PageHelper分页功能

    这篇文章主要介绍了SpringBoot如何集成PageHelper分页功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-03-03
  • InteliJ IDEA 设置eclipse快捷键 的图文教程

    InteliJ IDEA 设置eclipse快捷键 的图文教程

    本文通过图文并茂的形式给大家介绍了InteliJ IDEA 设置eclipse快捷键 ,非常不错,具有一定的参考借鉴价值,需要的朋友参考下
    2018-06-06
  • 详解java内部类的访问格式和规则

    详解java内部类的访问格式和规则

    在本文里我们给大家详细分享了关于java内部类的访问格式和规则知识点内容,有兴趣的朋友们学习下。
    2018-10-10
  • Windows下Java调用OCR进行图片识别

    Windows下Java调用OCR进行图片识别

    这篇文章主要为大家详细介绍了Windows下Java调用OCR进行图片识别,通过Tesseract-OCR对图片进行识别,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-12-12
  • java 算法之快速排序实现代码

    java 算法之快速排序实现代码

    这篇文章主要介绍了java 算法之快速排序实现代码的相关资料,需要的朋友可以参考下
    2017-05-05
  • Springboot整合MongoDB的Docker开发教程全解

    Springboot整合MongoDB的Docker开发教程全解

    这篇文章主要介绍了Springboot整合MongoDB的Docker开发,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值 ,需要的朋友可以参考下
    2020-07-07
  • Springboot打包为Docker镜像并部署的实现

    Springboot打包为Docker镜像并部署的实现

    这篇文章主要介绍了Springboot打包为Docker镜像并部署的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-12-12
  • java编程无向图结构的存储及DFS操作代码详解

    java编程无向图结构的存储及DFS操作代码详解

    这篇文章主要介绍了java编程无向图结构的存储及DFS操作代码详解,具有一定借鉴价值,需要的朋友可以了解下。
    2017-12-12

最新评论