详解Java利用深度优先遍历解决迷宫问题

 更新时间:2022年02月01日 08:27:09   作者:炒鸡辣鸡123  
深度优先遍历:深度优先遍历是图论中的经典算法。其利用了深度优先搜索算法可以产生目标图的相应拓扑排序表,采用拓扑排序表可以解决很多相关的图论问题,如最大路径问题等等。本文将利用深度优先遍历解决迷宫问题,感兴趣的可以了解一下

什么是深度优先

什么是深度,即向下,深度优先,即向下优先,一口气走到底,走到底发现没路再往回走。

在算法实现上来讲,深度优先可以考虑是递归的代名词,深度优先搜索必然需要使用到递归的思路。

有的人可能会说了,我可以用栈来实现,以迭代的方式,那么问题来了,栈这种数据结构,同学们认为是否也囊括了递归呢?Java语言的方法区本身也是实现在一个栈空间上的。

一个简单的例子

我们以一个简单的迷宫为例,以1代表墙,0代表路径,我们构造一个具有出入口的迷宫。

1 1 0 1 1 1 1 1 1

1 0 0 0 0 0 0 1 1

1 0 1 1 1 1 0 1 1

1 0 0 0 0 1 0 0 1

1 1 1 1 1 1 1 0 1

以上面这个0为入口,下面这个0为出口,那么深度优先的算法遍历顺序,方向的遍历顺序为左下右上,以dp[0][2]为入口,我把这个过程列在下面了:

第一步:

dp[0][2] -> dp[1][2]

第二步:

dp[1][2] -> dp[1][1]

第三步:

dp[1][1] -> dp[2][1]

第四步:

dp[2][1] -> dp[3][1]

第五步:

dp[3][1] -> dp[3][2]

第六步:

dp[3][2] -> dp[3][3]

第七步:

dp[3][3] -> dp[3][4]

第八步:

dp[3][4] -> dp[3][5] 由于 dp[3][5]是墙,所以深度优先算法需要开始回退,最终会回退到dp[1][2]这个位置,然后向右走

第八步:

dp[1][2] -> dp[1][3]

第九步:

dp[1][3] -> dp[1][4]

第十步:

dp[1][4] -> dp[1][5]

第十一步:

dp[1][5] -> dp[1][6]

第十二步:

dp[1][6] -> dp[2][6]

第十三步:

dp[2][6] -> dp[3][6]

第十四步:

dp[3][6] -> dp[3][7]

第十五步:

dp[3][7] -> dp[4][7] 终点,程序退出

可以发现,深度优先算法有点像我们的人生,需要不断试错,错了就退,直到找到一条通往出口的路。

现在让我们动手用代码实现一下上面的步骤吧。

程序实现

以深度优先的方式解决这个问题,主要考虑两点,首先是如何扩展节点,我们的顺序是左,下,右,上,那么,应该以什么样的方式实现这个呢?第二点,就是如何实现深度优先,虽然原理上肯定是递归,但是应该如何递归呢?要解决这两个问题,请看示例代码,以Java为例:

package com.chaojilaji.book;

import com.chaojilaji.book.util.InputUtils;

import java.util.HashSet;
import java.util.Set;

import static com.chaojilaji.book.util.CheckUtils.canAdd;

public class Dfs {

    public static Integer dfs(String[][] a, int currentX, int currentY, int chux, int chuy, Set<Integer> cache) {
        System.out.println(currentY + " " + currentX);
        if (currentX == chux && currentY == chuy) {
            return 1;
        }
        // TODO: 2022/1/11 枚举子节点,左 下 右 上
        int[] x = new int[]{-1, 0, 1, 0};
        int[] y = new int[]{0, 1, 0, -1};
        for (int i = 0; i < 4; i++) {
            if (canAdd(a, currentX + x[i], currentY + y[i], cache)) {
                Integer tmp = dfs(a, currentX + x[i], currentY + y[i], chux, chuy, cache);
                if (tmp != 0) {
                    System.out.println(currentY + " " + currentX + " 结果路径");
                    return tmp + 1;
                }
            }
        }
        System.out.println(currentY + " " + currentX + " 回滚");
        return 0;
    }

    public static Integer getAns(String[][] a) {
        int m = a[0].length;
        int n = a.length;
        int rux = -1, ruy = 0;
        int chux = -1, chuy = n - 1;
        for (int i = 0; i < m; i++) {
            if (a[0][i].equals("0")) {
                // TODO: 2022/1/11 找到入口
                rux = i;
            }
            if (a[n - 1][i].equals("0")) {
                chux = i;
            }
        }
        Set<Integer> cache = new HashSet<>();
        cache.add(rux * 100000 + ruy);
        System.out.println("打印行走过程");
        return dfs(a, rux, ruy, chux, chuy, cache)-1;
    }

    public static void demo() {
        String x = "1  1  0  1  1  1  1  1  1\n" +
                "1  0  0  0  0  0  0  1  1\n" +
                "1  0  1  1  1  1  0  1  1\n" +
                "1  0  0  0  0  1  0  0  1\n" +
                "1  1  1  1  1  1  1  0  1";
        String[][] a = InputUtils.getInput(x);
        Integer ans = getAns(a);
        System.out.println(ans == -1 ? "不可达" : "可达,需要行走" + ans + "步");

    }

    public static void main(String[] args) {
        demo();
    }

}

这里的canAdd方法是临界判断函数,如下:

/**
     * 临界判断
     * @param a
     * @param x
     * @param y
     * @param cache
     * @return
     */
public static Boolean canAdd(String[][] a, Integer x, Integer y, Set<Integer> cache) {
    int m = a[0].length;
    int n = a.length;
    if (x < 0 || x >= m) {
        return false;
    }
    if (y < 0 || y >= n) {
        return false;
    }
    if (a[y][x].equals("0") && !cache.contains(x * 100000 + y)) {
        cache.add(x * 100000 + y);
        return true;
    }
    return false;
}

可以瞧见,这里面最核心的代码在于dfs这个函数,让我们来深入分析一波

public static Integer dfs(String[][] a, int currentX, int currentY, int chux, int chuy, Set<Integer> cache) {
    System.out.println(currentY + " " + currentX);
    if (currentX == chux && currentY == chuy) {
        return 1;
    }
    // TODO: 2022/1/11 枚举子节点,左 下 右 上
    int[] x = new int[]{-1, 0, 1, 0};
    int[] y = new int[]{0, 1, 0, -1};
    for (int i = 0; i < 4; i++) {
        if (canAdd(a, currentX + x[i], currentY + y[i], cache)) {
            Integer tmp = dfs(a, currentX + x[i], currentY + y[i], chux, chuy, cache);
            if (tmp != 0) {
                System.out.println(currentY + " " + currentX + " 结果路径");
                return tmp + 1;
            }
        }
    }
    System.out.println(currentY + " " + currentX + " 回滚");
    return 0;
}

首先,dfs深度优先,首先应该写的是判断终止条件,这里的终止条件就是到达终点,即目前的横纵坐标等于出口的横纵坐标。

然后,我们利用两个方向数组作为移动方案,也就是

// TODO: 2022/1/11 枚举子节点,左 下 右 上
    int[] x = new int[]{-1, 0, 1, 0};
    int[] y = new int[]{0, 1, 0, -1};
    for (int i = 0; i < 4; i++) {
        if (canAdd(a, currentX + x[i], currentY + y[i], cache)) {
        }
    }

这种方法,是数组类型的移动方式的兼容写法,不管你的移动方向有多少,都可以配在x和y两个数组中。定义了四个方向,现在我们需要思考递归的过程。

既然我完成的时候是返回1,那么其实如果在这条路上的所有都应该加1,所以,就有了下面的判断

if (canAdd(a, currentX + x[i], currentY + y[i], cache)) {
    Integer tmp = dfs(a, currentX + x[i], currentY + y[i], chux, chuy, cache);
    if (tmp != 0) {
        System.out.println(currentY + " " + currentX + " 结果路径");
        return tmp + 1;
    }
}

当子dfs出来的结果不为0,说明该子dfs是可以到达出口的,那么直接把结果加1返回给上层即可。如果子dfs出来的结果为0,说明该子dfs是不能到达出口的,就直接返回0即可。

到此这篇关于详解Java利用深度优先遍历解决迷宫问题的文章就介绍到这了,更多相关Java深度优先遍历内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Java线程协调运行操作实例详解

    Java线程协调运行操作实例详解

    这篇文章主要介绍了Java线程协调运行操作,结合具体实例形式详细分析了Java线程协调运行原理、实现方法及相关操作注意事项,需要的朋友可以参考下
    2019-09-09
  • Java图书管理系统课程设计

    Java图书管理系统课程设计

    这篇文章主要为大家详细介绍了Java图书管理系统课程设计,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-02-02
  • java 将 list 字符串用逗号隔开拼接字符串的多种方法

    java 将 list 字符串用逗号隔开拼接字符串的多种方法

    这篇文章主要介绍了java 将 list 字符串用逗号隔开拼接字符串,本文给大家分享四种方法,每种方法通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-12-12
  • java 创建自定义数组

    java 创建自定义数组

    本篇文章是关于java 如何自己创建自定义数组,这里给大家一个小实例,希望能帮助有所需要的同学
    2016-07-07
  • Java线程优先级变量及功能

    Java线程优先级变量及功能

    这篇文章主要介绍了Java线程优先级变量及功能,关于优先级的问可能有两个或更多线程被分配了相同的优先级,那么它们的执行取决于操作系统,更多相关介绍,需要的小伙伴可以参考一下
    2022-06-06
  • java 生成xml并转为字符串的方法

    java 生成xml并转为字符串的方法

    今天小编就为大家分享一篇java 生成xml并转为字符串的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • 关于springboot响应式编程整合webFlux的问题

    关于springboot响应式编程整合webFlux的问题

    在springboot2.x版本中提供了webFlux依赖模块,该模块有两种模型实现:一种是基于功能性端点的方式,另一种是基于SpringMVC注解方式,今天通过本文给大家介绍springboot响应式编程整合webFlux的问题,感兴趣的朋友一起看看吧
    2022-01-01
  • 浅谈Java线程池的7大核心参数

    浅谈Java线程池的7大核心参数

    本篇文章基于正在看这篇文章的你已经具备了基本的Java并发的相关知识.如果对于Java并发编程一无所知的话,请先看看Java并发编程的一些前导基础知识,文中有非常详细的图文示例及代码,,需要的朋友可以参考下
    2021-05-05
  • Java多线程中Lock锁的使用小结

    Java多线程中Lock锁的使用小结

    这篇文章主要介绍了Java多线程中Lock锁的使用小结,本节主要讲了它的基本使用,大家可以举一反三,试试什么条件下会导致死锁,需要的朋友可以参考下
    2022-06-06
  • Java获取指定父节点、子节点的方法实现

    Java获取指定父节点、子节点的方法实现

    在Java中,要获取指定节点的父节点和子节点,通常需要使用 DOM,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧
    2024-02-02

最新评论