Java8中CompletableFuture使用场景与实现原理

 更新时间:2022年02月06日 08:47:27   作者:大远哥  
CompletableFuture是java8引入的新类,该类实现了Future接口和 CompletionStage接口,封装了future、forkjoin相关类来执行异步,这篇文章主要给大家介绍了关于Java8中CompletableFuture使用场景与实现原理的相关资料,需要的朋友可以参考下

1.概述

CompletableFuture是jdk1.8引入的实现类。扩展了Future和CompletionStage,是一个可以在任务完成阶段触发一些操作Future。简单的来讲就是可以实现异步回调。

2.为什么引入CompletableFuture

对于jdk1.5的Future,虽然提供了异步处理任务的能力,但是获取结果的方式很不优雅,还是需要通过阻塞(或者轮训)的方式。如何避免阻塞呢?其实就是注册回调。

业界结合观察者模式实现异步回调。也就是当任务执行完成后去通知观察者。比如Netty的ChannelFuture,可以通过注册监听实现异步结果的处理。

Netty的ChannelFuture

public Promise<V> addListener(GenericFutureListener<? extends Future<? super V>> listener) {
    checkNotNull(listener, "listener");
    synchronized (this) {
        addListener0(listener);
    }
    if (isDone()) {
        notifyListeners();
    }
    return this;
}
private boolean setValue0(Object objResult) {
    if (RESULT_UPDATER.compareAndSet(this, null, objResult) ||
        RESULT_UPDATER.compareAndSet(this, UNCANCELLABLE, objResult)) {
        if (checkNotifyWaiters()) {
            notifyListeners();
        }
        return true;
    }
    return false;
}

通过addListener方法注册监听。如果任务完成,会调用notifyListeners通知。

CompletableFuture通过扩展Future,引入函数式编程,通过回调的方式去处理结果。

3.功能

CompletableFuture的功能主要体现在他的CompletionStage。

可以实现如下等功能

  • 转换(thenCompose)
  • 组合(thenCombine)
  • 消费(thenAccept)
  • 运行(thenRun)。
  • 带返回的消费(thenApply)

消费和运行的区别:

消费使用执行结果。运行则只是运行特定任务。具体其他功能大家可以根据需求自行查看。

CompletableFuture借助CompletionStage的方法可以实现链式调用。并且可以选择同步或者异步两种方式。

这里举个简单的例子来体验一下他的功能。

public static void thenApply() {
    ExecutorService executorService = Executors.newFixedThreadPool(2);
    CompletableFuture cf = CompletableFuture.supplyAsync(() -> {
        try {
            //  Thread.sleep(2000);
        } catch (Exception e) {
            e.printStackTrace();
        }
        System.out.println("supplyAsync " + Thread.currentThread().getName());
        return "hello";
    }, executorService).thenApplyAsync(s -> {
        System.out.println(s + "world");
        return "hhh";
    }, executorService);
    cf.thenRunAsync(() -> {
        System.out.println("ddddd");
    });
    cf.thenRun(() -> {
        System.out.println("ddddsd");
    });
    cf.thenRun(() -> {
        System.out.println(Thread.currentThread());
        System.out.println("dddaewdd");
    });
}

执行结果

supplyAsync pool-1-thread-1
helloworld
ddddd
ddddsd
Thread[main,5,main]
dddaewdd

根据结果我们可以看到会有序执行对应任务。

注意:

如果是同步执行cf.thenRun。他的执行线程可能main线程,也可能是执行源任务的线程。如果执行源任务的线程在main调用之前执行完了任务。那么cf.thenRun方法会由main线程调用。

这里说明一下,如果是同一任务的依赖任务有多个:

  • 如果这些依赖任务都是同步执行。那么假如这些任务被当前调用线程(main)执行,则是有序执行,假如被执行源任务的线程执行,那么会是倒序执行。因为内部任务数据结构为LIFO。
  • 如果这些依赖任务都是异步执行,那么他会通过异步线程池去执行任务。不能保证任务的执行顺序。

上面的结论是通过阅读源代码得到的。下面我们深入源代码。

3.源码追踪

创建CompletableFuture

创建的方法有很多,甚至可以直接new一个。我们来看一下supplyAsync异步创建的方法。

public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier,
                                                   Executor executor) {
    return asyncSupplyStage(screenExecutor(executor), supplier);
}
static Executor screenExecutor(Executor e) {
    if (!useCommonPool && e == ForkJoinPool.commonPool())
        return asyncPool;
    if (e == null) throw new NullPointerException();
    return e;
}

入参Supplier,带返回值的函数。如果是异步方法,并且传递了执行器,那么会使用传入的执行器去执行任务。否则采用公共的ForkJoin并行线程池,如果不支持并行,新建一个线程去执行。

这里我们需要注意ForkJoin是通过守护线程去执行任务的。所以必须有非守护线程的存在才行。

asyncSupplyStage方法

static <U> CompletableFuture<U> asyncSupplyStage(Executor e,
                                                 Supplier<U> f) {
    if (f == null) throw new NullPointerException();
    CompletableFuture<U> d = new CompletableFuture<U>();
    e.execute(new AsyncSupply<U>(d, f));
    return d;
}

这里会创建一个用于返回的CompletableFuture。

然后构造一个AsyncSupply,并将创建的CompletableFuture作为构造参数传入。
那么,任务的执行完全依赖AsyncSupply。

AsyncSupply#run

public void run() {
    CompletableFuture<T> d; Supplier<T> f;
    if ((d = dep) != null && (f = fn) != null) {
        dep = null; fn = null;
        if (d.result == null) {
            try {
                d.completeValue(f.get());
            } catch (Throwable ex) {
                d.completeThrowable(ex);
            }
        }
        d.postComplete();
    }
}

1.该方法会调用Supplier的get方法。并将结果设置到CompletableFuture中。我们应该清楚这些操作都是在异步线程中调用的。

2.d.postComplete方法就是通知任务执行完成。触发后续依赖任务的执行,也就是实现CompletionStage的关键点。
在看postComplete方法之前我们先来看一下创建依赖任务的逻辑。

thenAcceptAsync方法

public CompletableFuture<Void> thenAcceptAsync(Consumer<? super T> action) {
    return uniAcceptStage(asyncPool, action);
}
private CompletableFuture<Void> uniAcceptStage(Executor e,
                                               Consumer<? super T> f) {
    if (f == null) throw new NullPointerException();
    CompletableFuture<Void> d = new CompletableFuture<Void>();
    if (e != null || !d.uniAccept(this, f, null)) {
        # 1
        UniAccept<T> c = new UniAccept<T>(e, d, this, f);
        push(c);
        c.tryFire(SYNC);
    }
    return d;
}

上面提到过。thenAcceptAsync是用来消费CompletableFuture的。该方法调用uniAcceptStage。

uniAcceptStage逻辑:

1.构造一个CompletableFuture,主要是为了链式调用。

2.如果为异步任务,直接返回。因为源任务结束后会触发异步线程执行对应逻辑。

3.如果为同步任务(e==null),会调用d.uniAccept方法。这个方法在这里逻辑:如果源任务完成,调用f,返回true。否则进入if代码块(Mark 1)。

4.如果是异步任务直接进入if(Mark 1)。

Mark1逻辑:

1.构造一个UniAccept,将其push入栈。这里通过CAS实现乐观锁实现。

2.调用c.tryFire方法。

final CompletableFuture<Void> tryFire(int mode) {
    CompletableFuture<Void> d; CompletableFuture<T> a;
    if ((d = dep) == null ||
        !d.uniAccept(a = src, fn, mode > 0 ? null : this))
        return null;
    dep = null; src = null; fn = null;
    return d.postFire(a, mode);
}

1.会调用d.uniAccept方法。其实该方法判断源任务是否完成,如果完成则执行依赖任务,否则返回false。

2.如果依赖任务已经执行,调用d.postFire,主要就是Fire的后续处理。根据不同模式逻辑不同。
这里简单说一下,其实mode有同步异步,和迭代。迭代为了避免无限递归。

这里强调一下d.uniAccept方法的第三个参数。

如果是异步调用(mode>0),传入null。否则传入this。

区别看下面代码。c不为null会调用c.claim方法。

try {
    if (c != null && !c.claim())
        return false;
    @SuppressWarnings("unchecked") S s = (S) r;
    f.accept(s);
    completeNull();
} catch (Throwable ex) {
    completeThrowable(ex);
}

final boolean claim() {
    Executor e = executor;
    if (compareAndSetForkJoinTaskTag((short)0, (short)1)) {
        if (e == null)
            return true;
        executor = null; // disable
        e.execute(this);
    }
    return false;
}

claim方法是逻辑:

  • 如果异步线程为null。说明同步,那么直接返回true。最后上层函数会调用f.accept(s)同步执行任务。
  • 如果异步线程不为null,那么使用异步线程去执行this。

this的run任务如下。也就是在异步线程同步调用tryFire方法。达到其被异步线程执行的目的。

public final void run()                { tryFire(ASYNC); }

看完上面的逻辑,我们基本理解依赖任务的逻辑。

其实就是先判断源任务是否完成,如果完成,直接在对应线程执行以来任务(如果是同步,则在当前线程处理,否则在异步线程处理)

如果任务没有完成,直接返回,因为等任务完成之后会通过postComplete去触发调用依赖任务。

postComplete方法

final void postComplete() {
    /*
     * On each step, variable f holds current dependents to pop
     * and run.  It is extended along only one path at a time,
     * pushing others to avoid unbounded recursion.
     */
    CompletableFuture<?> f = this; Completion h;
    while ((h = f.stack) != null ||
           (f != this && (h = (f = this).stack) != null)) {
        CompletableFuture<?> d; Completion t;
        if (f.casStack(h, t = h.next)) {
            if (t != null) {
                if (f != this) {
                    pushStack(h);
                    continue;
                }
                h.next = null;    // detach
            }
            f = (d = h.tryFire(NESTED)) == null ? this : d;
        }
    }
}

在源任务完成之后会调用。

其实逻辑很简单,就是迭代堆栈的依赖任务。调用h.tryFire方法。NESTED就是为了避免递归死循环。因为FirePost会调用postComplete。如果是NESTED,则不调用。

堆栈的内容其实就是在依赖任务创建的时候加入进去的。上面我们已经提到过。

4.总结

基本上述源码已经分析了逻辑。

因为涉及异步等操作,我们需要理一下(这里针对全异步任务):

1.创建CompletableFuture成功之后会通过异步线程去执行对应任务。

2.如果CompletableFuture还有依赖任务(异步),会将任务加入到CompletableFuture的堆栈保存起来。以供后续完成后执行依赖任务。

当然,创建依赖任务并不只是将其加入堆栈。如果源任务在创建依赖任务的时候已经执行完成,那么当前线程会触发依赖任务的异步线程直接处理依赖任务。并且会告诉堆栈其他的依赖任务源任务已经完成。

主要是考虑代码的复用。所以逻辑相对难理解。

postComplete方法会被源任务线程执行完源任务后调用。同样也可能被依赖任务线程后调用。

执行依赖任务的方法主要就是靠tryFire方法。因为这个方法可能会被多种不同类型线程触发,所以逻辑也绕一点。(其他依赖任务线程、源任务线程、当前依赖任务线程)

  • 如果是当前依赖任务线程,那么会执行依赖任务,并且会通知其他依赖任务。
  • 如果是源任务线程,和其他依赖任务线程,则将任务转换给依赖线程去执行。不需要通知其他依赖任务,避免死递归。

不得不说Doug Lea的编码,真的是艺术。代码的复用性全体现在逻辑上了。

到此这篇关于Java8中CompletableFuture使用场景与实现原理的文章就介绍到这了,更多相关CompletableFuture使用场景与原理内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • springboot 按月分表的实现方式

    springboot 按月分表的实现方式

    本文主要介绍了springboot 按月分表的实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-04-04
  • 如何在Java中优雅地判空详解

    如何在Java中优雅地判空详解

    这篇文章主要大家介绍了关于如何在Java中优雅地判空的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2018-11-11
  • Spring MVC的参数绑定和返回值问题

    Spring MVC的参数绑定和返回值问题

    这篇文章主要介绍了Spring MVC的参数绑定和返回值问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-02-02
  • 分享JVM 的四种引用方式

    分享JVM 的四种引用方式

    这篇文章主要介绍了分享JVM 的四种引用方式,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-07-07
  • Spring Boot实现web.xml功能示例详解

    Spring Boot实现web.xml功能示例详解

    这篇文章主要介绍了Spring Boot实现web.xml功能,通过本文介绍我们了解到,在Spring Boot应用中,我们可以通过注解和编程两种方式实现web.xml的功能,包括如何创建及注册Servlet、Filter以及Listener等,需要的朋友可以参考下
    2023-09-09
  • 浅谈SpringCloud之Ribbon详解

    浅谈SpringCloud之Ribbon详解

    这篇文章主要介绍了浅谈SpringCloud之Ribbon,文中有非常详细的代码示例,对正在学习SpringCloud的小伙伴们有很大的帮助,需要的朋友可以参考下
    2021-05-05
  • RocketMQ中的通信模块详解

    RocketMQ中的通信模块详解

    这篇文章主要介绍了RocketMQ中的通信模块详解,RocketMQ消息队列集群主要包括NameServer、Broker(Master/Slave)、Producer、Consumer4个角色,本文我们简单来讲解一下,需要的朋友可以参考下
    2024-01-01
  • Java实现基本排序算法的示例代码

    Java实现基本排序算法的示例代码

    排序就是将一串记录按照其中某个或某些关键字的大小,递增或递减的排列起来的操作。本文将用Java实现一些基本的排序算法,感兴趣的可以了解一下
    2022-07-07
  • mybatis的insert语句插入数据时的返回值的实现

    mybatis的insert语句插入数据时的返回值的实现

    这篇文章主要介绍了mybatis的insert语句插入数据时的返回值的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-10-10
  • IDEA入门级使用教程你居然还在用eclipse?

    IDEA入门级使用教程你居然还在用eclipse?

    上个月,idea的使用量超越eclipse的消息席卷了整个IT界,idea到底好在哪里呢?下面小编通过本文给大家详细介绍下IDEA入门级使用教程,非常详细,感兴趣的朋友一起看看吧
    2020-10-10

最新评论