详解基于Matlab的空心散点检测

 更新时间:2022年02月28日 11:37:54   作者:slandarer  
这篇文章主要介绍了如何利用Matlab实现空心散点检测,文中的示例代码讲解详细,对我们学习Matlab有一定的帮助,感兴趣的可以跟随小编了解一下

问题描述

有一张这样的图片,如何提取里面的红色圈圈坐标,并且连接这些坐标形成两个封闭的环路?

过程展示

图像导入

oriPic=imread('test1.png');

subplot(2,2,1)
imshow(oriPic)

依据RGB值图像二值化

原理就是图中颜色种类比较少,只有红黑白,而红色和白色都是R通道数值较大,因此我们可以利用这一点进行图像分割

% 删除红色外的部分并构造二值图
grayPic=rgb2gray(oriPic);
grayPic(oriPic(:,:,1)<250)=255;
grayPic(grayPic<250)=0;

%subplot(2,2,2)
figure
imshow(grayPic)

图像腐蚀

对于白色来说是腐蚀,对于黑色来说是膨胀,这一步是为了让那些有缺口的小圆圈将缺口补起来

% 图像膨胀,使未连接边缘连接
SE=[0 1 0;1 1 1;0 1 0];
bwPic=imerode(grayPic,SE);

figure
imshow(bwPic)

图像边缘清理

就是把和边缘连接的不被黑色包围的区域变成黑色:

% 边缘清理:保留圆圈联通区域
bwPic=imclearborder(bwPic);
%subplot(2,2,3)
figure
imshow(bwPic)

联通区域查找与坐标均值计算

现在每一个白点都是一个坐标区域,我们检测所有联通区域并计算各个区域的重心即可:

% 获取每一个联通区域
[LPic,labelNum]=bwlabel(bwPic);

% 计算每一个联通区域 坐标均值
pointSet=zeros(labelNum,2);
for i=1:labelNum
    [X,Y]=find(LPic==i);
    Xmean=mean(X);
    Ymean=mean(Y);
    pointSet(i,:)=[Xmean,Ymean];
end

% 画个图展示一下
%subplot(2,2,4)
figure
imshow(bwPic)
hold on
scatter(pointSet(:,2),pointSet(:,1),'r','LineWidth',1)

可以看出定位结果还是非常准确的:

圈查找

就以一个点开始不断找最近的点呗,没啥好说的:

n=1;
while ~isempty(pointSet)
    circleSetInd=1;
    for j=1:length(pointSet)
        disSet=sqrt(sum((pointSet-pointSet(circleSetInd(end),:)).^2,2));
        [~,ind]=sort(disSet);
        ind=ind(1:5);
        [~,~,t_ind]=intersect(circleSetInd,ind);
        ind(t_ind)=[];
        if ~isempty(ind)
            circleSetInd=[circleSetInd;ind(1)];
        else
            circleSet{n}=pointSet(circleSetInd,:);
            pointSet(circleSetInd,:)=[];
            n=n+1;
            break
        end
    end
end

figure
imshow(oriPic)
hold on
for i=1:n-1
plot(circleSet{i}(:,2),circleSet{i}(:,1),'LineWidth',2)
end

这效果就很美滋滋:

完整代码

function redPnt
oriPic=imread('test1.png');
%subplot(2,2,1)
figure
imshow(oriPic)

% 删除红色外的部分并构造二值图
grayPic=rgb2gray(oriPic);
grayPic(oriPic(:,:,1)<250)=255;
grayPic(grayPic<250)=0;
%subplot(2,2,2)
figure
imshow(grayPic)

% 图像膨胀,使未连接边缘连接
SE=[0 1 0;1 1 1;0 1 0];
bwPic=imerode(grayPic,SE);
figure
imshow(bwPic)

% 边缘清理:保留圆圈联通区域
bwPic=imclearborder(bwPic);
%subplot(2,2,3)
figure
imshow(bwPic)

% 获取每一个联通区域
[LPic,labelNum]=bwlabel(bwPic);

% 计算每一个联通区域 坐标均值
pointSet=zeros(labelNum,2);
for i=1:labelNum
    [X,Y]=find(LPic==i);
    Xmean=mean(X);
    Ymean=mean(Y);
    pointSet(i,:)=[Xmean,Ymean];
end


%subplot(2,2,4)
figure
imshow(bwPic)
hold on
scatter(pointSet(:,2),pointSet(:,1),'r','LineWidth',1)

n=1;
while ~isempty(pointSet)
    circleSetInd=1;
    for j=1:length(pointSet)
        disSet=sqrt(sum((pointSet-pointSet(circleSetInd(end),:)).^2,2));
        [~,ind]=sort(disSet);
        ind=ind(1:5);
        [~,~,t_ind]=intersect(circleSetInd,ind);
        ind(t_ind)=[];
        if ~isempty(ind)
            circleSetInd=[circleSetInd;ind(1)];
        else
            circleSet{n}=pointSet(circleSetInd,:);
            pointSet(circleSetInd,:)=[];
            n=n+1;
            break
        end
    end
end

figure
imshow(oriPic)
hold on
for i=1:n-1
plot(circleSet{i}(:,2),circleSet{i}(:,1),'LineWidth',2)
end

end

其它形状空心散点检测

来波正方形试试:

可以看出效果还是很棒的,当然大家可以根据实际情况自行更改图像腐蚀模板形状,如果散点是其它颜色请自行更改第一步的图像分割条件。

后注:

若是因为点较为密集而导致圈形路径内部白色区域没被清除,可能会将内部区域也算作散点造成错误,解决方法是计算每个联通区域面积并剔除远远大于区域面积中位数的联通区域:

问题出现原因的图片描述:

如图所示种间那一大片区域也被算作散点

更改后代码如下:

function redPnt
oriPic=imread('test2.png');
figure
imshow(oriPic)

% 删除红色外的部分并构造二值图
grayPic=rgb2gray(oriPic);
grayPic(oriPic(:,:,1)<250)=255;
grayPic(grayPic<250)=0;
figure
imshow(grayPic)

% 图像膨胀,使未连接边缘连接
SE=[0 1 0;1 1 1;0 1 0];
bwPic=imerode(grayPic,SE);
figure
imshow(bwPic)

% 边缘清理:保留圆圈联通区域
bwPic=imclearborder(bwPic);
figure
imshow(bwPic)

% 获取每一个联通区域
[LPic,labelNum]=bwlabel(bwPic);

% 筛掉超大区域
pointSizeSet=zeros(1,labelNum);
for i=1:labelNum
    pointSizeSet(i)=sum(sum(LPic==i));
end
[~,ind]=find(pointSizeSet>10*median(pointSizeSet));

% 计算每一个联通区域 坐标均值
pointSet=zeros(labelNum,2);
for i=1:labelNum
    [X,Y]=find(LPic==i);
    Xmean=mean(X);
    Ymean=mean(Y);
    pointSet(i,:)=[Xmean,Ymean];
end
pointSet(ind,:)=[];


figure
imshow(bwPic)
hold on
scatter(pointSet(:,2),pointSet(:,1),'r','LineWidth',1)

n=1;
while ~isempty(pointSet)
    circleSetInd=1;
    for j=1:length(pointSet)
        disSet=sqrt(sum((pointSet-pointSet(circleSetInd(end),:)).^2,2));
        [~,ind]=sort(disSet);
        ind=ind(1:min(5,length(ind)));
        [~,~,t_ind]=intersect(circleSetInd,ind);
        ind(t_ind)=[];
        if ~isempty(ind)
            circleSetInd=[circleSetInd;ind(1)];
        else
            circleSet{n}=pointSet(circleSetInd,:);
            pointSet(circleSetInd,:)=[];
            n=n+1;
            break
        end
    end
end

figure
imshow(oriPic)
hold on
for i=1:n-1
plot(circleSet{i}(:,2),circleSet{i}(:,1),'LineWidth',2)
end

end

注:

2016版本及以前可能这句:

disSet=sqrt(sum((pointSet-pointSet(circleSetInd(end),:)).^2,2));

会出现数组大小不匹配问题,可以将其改为:

tempMat=repmat(pointSet(circleSetInd(end),:),[size(pointSet,1),1]);
disSet=sqrt(sum((pointSet-tempMat).^2,2));

以上就是详解基于Matlab的空心散点检测的详细内容,更多关于Matlab空心散点检测的资料请关注脚本之家其它相关文章!

相关文章

  • c++仿函数和函数适配器的使用详解

    c++仿函数和函数适配器的使用详解

    这篇文章主要介绍了c++仿函数和函数适配器的使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-12-12
  • C++动态规划算法实现矩阵链乘法

    C++动态规划算法实现矩阵链乘法

    动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解
    2022-06-06
  • 使用matlab绘制七夕表白玫瑰花束

    使用matlab绘制七夕表白玫瑰花束

    又是一年七夕节要到了,每年一次直男审美MATLAB绘图大赛开始了,于是今年对我之前写的老代码进行了点优化组合,整了个花球变花束,感兴趣的小伙伴可以动手试一试
    2023-08-08
  • C语言宏定义结合全局变量的方法实现单片机串口透传模式

    C语言宏定义结合全局变量的方法实现单片机串口透传模式

    今天小编就为大家分享一篇关于C语言宏定义结合全局变量的方法实现单片机串口透传模式,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2018-12-12
  • C语言动态规划点杀dp算法LeetCode炒股习题案例解析

    C语言动态规划点杀dp算法LeetCode炒股习题案例解析

    这篇文章主要介绍为了C语言动态规划点杀dp算法,本文以LeetCode炒股习题案例来为大家进行详细解析,有需要的朋友可以借鉴参考下,希望能够有所帮助
    2022-02-02
  • 详解C++中指针和引用的区别

    详解C++中指针和引用的区别

    这篇文章主要介绍了C++中指针和引用的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-04-04
  • C语言中的文件操作详解

    C语言中的文件操作详解

    这篇文章主要介绍了C语言中的文件操作详解,使用文件可以将数据直接存放到电脑的硬盘上,做到了数据的持久化
    2022-07-07
  • Define,const,static用法总结

    Define,const,static用法总结

    const定义的全局数据变量,其基本作用和define相同,但又在define的基础上增加了好多功能
    2013-10-10
  • C++实现将图片转换为马赛克效果的示例代码

    C++实现将图片转换为马赛克效果的示例代码

    这篇文章主要为大家详细介绍了C++如何实现将图片转换为马赛克效果,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以了解一下
    2023-01-01
  • 利用boost获取时间并格式化的方法

    利用boost获取时间并格式化的方法

    下面小编就为大家带来一篇利用boost获取时间并格式化的方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-03-03

最新评论