C++ 动态规划算法使用分析

 更新时间:2022年03月24日 17:16:20   作者:ymz123_  
动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解

Fibonacci

题目描述:

大家都知道斐波那契数列,现在要求输入一个正整数 n ,请你输出斐波那契数列的第 n 项。

解题思路:

1.递归

2.动态规划

状态:F(n)

状态递推:F(n)=F(n-1)+F(n-2)

初始值:F(1)=F(2)=1

返回结果:F(N)

代码实现:

法一:递归(效率低):

class Solution{public: int Fibonacci(int n)
{        // 初始值 
	if (n <= 0)
	{ 
		return 0; 
	} 
	if (n == 1 || n == 2) 
	{
		return 1; 
	}        
	// F(n)=F(n-1)+F(n-2) 
	return Fibonacci(n - 2) + Fibonacci(n - 1); }};

法二:动态规划

class Solution {
public:
    int Fibonacci(int n) {
        if(n==1 || n==2)
            return 1;
        int fn;
        int fn1 = 1, fn2 = 1;
        for(int i = 2; i < n; i++)
        {
            fn = fn1 + fn2;
            fn1 = fn2;
            fn2 = fn;
        }
        
        return fn;
        /*上述解法的空间复杂度为O(n)
        其实F(n)只与它相邻的前两项有关,
        所以没有必要保存所有子问题的解
        只需要保存两个子问题的解就可以
        下面方法的空间复杂度将为O(1)*/
        if(n==1 || n==2)
            return 1;
        int* F = new int[n];
        //初始状态
        F[0] = 1;
        F[1] = 1;
        for(int i = 2; i < n; i++)
        {
            F[i] = F[i-1] + F[i-2];
        }
        
        return F[n-1];
    }
};

字符串分割(Word Break)

题目描述:

给定一个字符串s和一组单词dict,判断s是否可以用空格分割成一个单词序列,使得单词序列中所有的单词都是dict中的单词(序列可以包含一个或多个单词)。

例如:

给定s=“nowcode”;

dict=[“now”, “code”].

返回true,因为"nowcode"可以被分割成"now code".

解题思路:

状态:

  • 子状态:前1,2,3,…,n个字符能否根据词典中的词被成功分词
  • F(i): 前i个字符能否根据词典中的词被成功分词

状态递推:

  • F(i): true{j <i && F(j) && substr[j+1,i]能在词典中找到} OR false 在j小于i中,只要能找到一个F(j)为true,并且从j+1到i之间的字符能在词典 中找到,则F(i)为true

初始值:

  • 对于初始值无法确定的,可以引入一个不代表实际意义的空状态,作为状态的起始 空状态的值需要保证状态递推可以正确且顺利的进行,到底取什么值可以通过简单的例子进行验证 F(0) = true

返回结果:F(n)

代码实现:

class Solution {
public:
    bool wordBreak(string s, unordered_set<string> &dict) {
        int len = s.size();
        vector<bool> F(len+1, false);
        F[0] = true;
        for(int i = 1; i <= len; i++)
        {
            //F[8]的状态:7<8 && F[7] && [8,8]
            //F[8]的状态:6<8 && F[6] && [7,8] 
            for(int j = i-1; j >= 0; j--)
            {
                if(F[j] && dict.find(s.substr(j,i-j)) != dict.end())
                {
                    F[i] = true;
                    break;
                }
            }
        }
        
        return F[len];
    }
};

三角矩阵(Triangle)

题目描述:

给出一个三角形,计算从三角形顶部到底部的最小路径和,每一步都可以移动到下面一行相邻的数字

例如,给出的三角形如下:

[[20],[30,40],[60,50,70],[40,10,80,30]]

解题思路:

状态:子状态:从(0,0)到(1,0),(1,1),(2,0),…(n,n)的最短路径和 F(i,j): 从(0,0)到(i,j)的最短路径和

状态递推: F(i,j) = min( F(i-1, j-1), F(i-1, j)) + triangle[i][j]

初始值: F(0,0) = triangle[0][0]返回结果: min(F(n-1, i))

代码实现:

class Solution {
public:
    int minimumTotal(vector<vector<int> > &triangle) {
        if(triangle.empty())
            return 0;
        int row = triangle.size();
        vector<vector<int> > minSum(triangle);
        for(int i = 1; i < row; i++)
        {
            for(int j = 0; j <= i; j++)
            {
                if(j == 0)
                    minSum[i][j] = minSum[i-1][j] + triangle[i][j];
                else if(j == i)
                    minSum[i][j] = minSum[i-1][j-1] + triangle[i][j];
                else
                    minSum[i][j] = min(minSum[i-1][j], minSum[i-1][j-1])
                                   + triangle[i][j];
            }
        }
        int result = minSum[row-1][0];
        for(int i = 1; i < triangle.size(); i++)
        {
            result = min(result, minSum[row-1][i]);
        }
        
        return result;
    }
};

路径总数(Unique Paths)

题目描述:

一个机器人在m×n大小的地图的左上角(起点)。 机器人每次可以向下或向右移动。机器人要到达地图的右下角(终点)。 可以有多少种不同的路径从起点走到终点?

解题思路:

状态:子状态:从(0,0)到达(1,0),(1,1),(2,1),…(m-1,n-1)的路径数 F(i,j): 从(0,0)到达F(i,j)的路径数

状态递推: F(i,j) = F(i-1,j) + F(i,j-1)

初始化: 特殊情况:第0行和第0列 F(0,i) = 1 F(i,0) = 1

返回结果: F(m-1,n-1)

代码实现:

class Solution {
public:
    /**
     * 
     * @param m int整型 
     * @param n int整型 
     * @return int整型
     */
    int uniquePaths(int m, int n) {
        // write code here
        vector<vector<int> > ret(m, vector<int>(n,1));
        for(int i = 1; i < m; i++)
        {
            for(int j = 1; j < n; j++)
            {
                ret[i][j] = ret[i-1][j] + ret[i][j-1];
            }
        }
        
        return ret[m-1][n-1];
    }
};

最小路径和(Minimum Path Sum)

题目描述:

给定一个由非负整数填充的m x n的二维数组,现在要从二维数组的左上角走到右下角,请找出路径上的所有数字之和最小的路径。 注意:你每次只能向下或向右移动。

解题思路:

状态:子状态:从(0,0)到达(1,0),(1,1),(2,1),…(m-1,n-1)的最短路径 F(i,j): 从(0,0)到达F(i,j)的最短路径。

状态递推: F(i,j) = min{F(i-1,j) , F(i,j-1)} + (i,j)

初始化: F(0,0) = (0,0) 特殊情况:第0行和第0列 F(0,i) = F(0,i-1) + (0,i) F(i,0) = F(i-1,0) + (i,0)

返回结果: F(m-1,n-1)

代码实现:

class Solution {
public:
    /**
     * 
     * @param grid int整型vector<vector<>> 
     * @return int整型
     */
    int minPathSum(vector<vector<int> >& grid) {
        // write code here
        if(grid.size() == 0 || grid[0].size() == 0)
            return 0;
        int M = grid.size();
        int N = grid[0].size();
        vector<vector<int> > ret(M, vector<int>(N,0));
        ret[0][0] = grid[0][0];
        for(int i = 1; i < N; i++)
        {
            ret[0][i] = ret[0][i-1] + grid[0][i];
        }
        for(int i = 1; i < M; i++)
        {
            ret[i][0] = ret[i-1][0] + grid[i][0];
        }
        for(int i = 1; i < M; i++)
        {
            for(int j = 1; j < N; j++)
            {
                ret[i][j] = min(ret[i-1][j],ret[i][j-1]) + grid[i][j];
            }
        }
        
        return ret[M-1][N-1];
    }
};

到此这篇关于C++ 动态规划算法使用分析的文章就介绍到这了,更多相关C++ 动态规划内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 详解C语言在STM32中的内存分配问题

    详解C语言在STM32中的内存分配问题

    这篇文章主要介绍了C语言在STM32中的内存分配,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-12-12
  • Qt QPainter的使用方法

    Qt QPainter的使用方法

    QPainter是Qt的一个绘图类,它的主要任务是在绘图设备上进行2D图形渲染,本文主要介绍了Qt QPainter的使用方法,具有一定的参考价值,感兴趣的可以了解一下
    2024-03-03
  • C语言 常量详解及示例代码

    C语言 常量详解及示例代码

    本文主要讲解C语言 常量,这里整理了 C语言常量的基础知识,并附代码示例和示例详细讲解,希望能帮助开始学习C 语言的同学
    2016-08-08
  • C语言基础之C语言格式化输出函数printf详解

    C语言基础之C语言格式化输出函数printf详解

    这篇文章主要介绍了C语言格式化输出函数printf详解,printf函数中用到的格式字符与printf函数中用到的格式修饰符,感兴趣的小伙伴可以借鉴一下
    2023-03-03
  • Qt增加版本公司等信息两种方式

    Qt增加版本公司等信息两种方式

    在项目中生成exe或者动态库过程中可能需要加入公司信息、版本号、说明等等,下面这篇文章主要给大家介绍了关于Qt增加版本公司等信息的两种方式,需要的朋友可以参考下
    2024-01-01
  • OpenCV实现图像距离变换

    OpenCV实现图像距离变换

    这篇文章主要为大家详细介绍了OpenCV实现图像距离变换,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-06-06
  • 浅谈关于C++memory_order的理解

    浅谈关于C++memory_order的理解

    这篇文章主要介绍了浅谈关于C++memory_order的理解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-08-08
  • 关于win32 gettimeofday替代方案

    关于win32 gettimeofday替代方案

    下面小编就为大家带来一篇关于win32 gettimeofday替代方案。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2016-12-12
  • C++中正则表达式的使用方法详解

    C++中正则表达式的使用方法详解

    几乎所有的编程语言都支持正则表达式。 C++从C++11开始直接支持正则表达式。除了编程语言之外,大多数文本处理程序都使用正则表达式。本文将探讨正则表达式的一般细节以及C++编程方面的细节,感兴趣的可以学习一下
    2022-05-05
  • C++ 将数据转为字符串的几种方法

    C++ 将数据转为字符串的几种方法

    这篇文章主要介绍了C++ 将数据转为字符串的几种方法,十分的实用,有需要的小伙伴可以参考下。
    2015-06-06

最新评论