C++AVL树4种旋转详讲(左单旋、右单旋、左右双旋、右左双旋)

 更新时间:2022年11月07日 11:25:40   作者:一个小井盖  
AVL树即平衡二叉搜索树,平衡因子bf=右子树的高度-左子树的高度,bf为0,-1,1时,此树即平衡,下面这篇文章主要给大家介绍了关于C++AVL树4种旋转(左单旋、右单旋、左右双旋、右左双旋)的相关资料,需要的朋友可以参考下

引子:AVL树是因为什么出现的?

二叉搜索树可以缩短查找的效率,如果数据有序接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下时间复杂度:O(N)

两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年 发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点左右子树高度之差的绝对值不超过1(对树中的结点进行调整),即为AVl树以他们的名字缩写命名也可以叫高度二叉搜索树

1.AVl树的的特性

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树,它就是AVL树。

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1),节点右子树最长路径-左子树最长路径

如果AVl树有n个结点,其高度可保持在O(logN)搜索时间复杂度O(logN),为什么?

答:左右子树高度之差的绝对值不超过1,那么只有最后一层会差一部分的节点;

2.AVl树的框架

template<class K, class V>
struct AVLtreeNode
{
    //节点构造函数
	AVLtreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_bf(0)
		,_kv(kv)
	{}
    //节点的成员
    //三叉链
	AVLtreeNode<K, V>* _left;
	AVLtreeNode<K, V>* _right;
	AVLtreeNode<K, V>* _parent;
	int _bf;//平衡因子
    //数据使用库里面的pair类存储的kv
	pair<K, V> _kv;
};
template<class K,class V>
class AVLtree
{
	typedef AVLtreeNode<K, V> Node;
public:
    //构造函数
	AVLtree()
		:_root(nullptr)
	{}
    //四种旋转
	void RotateL(Node* parent)
	void RotateR(Node* parent)
	void RotateLR(Node* parent)
	void RotateRL(Node* parent)
    //插入
	bool Insert(const pair<K, V>& kv)
    //寻找
	Node* Find(const K& kv)
private:
	Node* _root;
};

三叉链是什么?

3.AVL树的插入 

bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}
		Node* parent = _root, *cur = _root;
		while (cur)
		{
			//找nulptr,如果已经有这个key了,二叉搜索树的特性不支持冗余,所以返回失败
			if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first <kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;
			}
		}
		//
		cur = new Node(kv);
		//判断孩子在父亲的左边还是右边
		if (cur->_kv.first > parent->_kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		while (parent)
		{
			//影响一条路径所有的祖先
			if (parent->_right == cur)
				parent->_bf++;
			else
				parent->_bf--;
			
			if (parent->_bf == 0)
			{
				//左右平衡了不会再影响祖先了
				break;
			}
			if (parent->_bf == 1 || parent->_bf == -1)
			{
				//当前节点所在子树变了,会影响父亲
				// 继续往上更新
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//parent所在子树已经不平衡,需要旋转处理一下
				if (parent->_bf == -2)
				{
					if (cur->_bf == -1)
						// 右单旋
						RotateR(parent);
					else // cur->_bf == 1
						RotateLR(parent);
				}
				else // parent->_bf  == 2
				{
					if (cur->_bf == 1)
						// 左单旋
						RotateL(parent);
					else // cur->_bf == -1
						RotateRL(parent);
				}
				break;
			}
			else
			{
				// 插入节点之前,树已经不平衡了,或者bf出错。需要检查其他逻辑
				assert(false);
			}
		}
		return true;
	}

插入整体逻辑:

  1. 如果还没有元素是一课空树,直接插入即可;如果有元素,按pair的first(key)和比较的节点比较结果为大说明为空的哪个位置在右边,和比较的节点比较的结果小说明为空的哪个位置在左边,如果相等说明已经有这个元素了,二叉搜索树不支持冗余返回一个pair类第一个成员为那个相同元素的map的迭代器和第二个成员为false的pair类迭代器;
  2. 不知道这个已经找到的位置在父节点的左边还是右边,需要判断一下,然后插入元素;
  3. 插入元素的后那么平衡因子将发生变化,为0说明这个父亲节点左右平衡不会影响其他节点,为1或者-1需要向上调整,为2或者-2说明已经不平衡需要旋转;

节点右子树最长路径-左子树最长路径,右边插入节点就+,左边插入节点就-;

3.1四种旋转(左单旋、右单旋、左右双旋、右左双旋)

3.1.1左单旋

  • 调用函数是传的参数是轴点
  • 要保留轴点的父亲,以及调整三叉链
  • 调整后原来的孩子和父亲(轴点)的平衡因子都置为0;
void RotateR(Node* parent)
	{
		//轴点的左,孩子节点
		Node* subL = parent->_left;
		//孩子节点的右
		Node* subLR = subL->_right;
		//我的右当你(轴点)的左
		parent->_left = subLR;
		//调整三叉链
		if (subLR)
			subLR->_parent = parent;
		//你(轴点)做我的右
		subL->_right = parent;
		//调整三叉链
		Node* parentParent = parent->_parent;
		parent->_parent = subL;
 
		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			//轴点的父亲新的孩子节点
			if (parentParent->_left == parent)
				parentParent->_left = subL;
			else
				parentParent->_right = subL;
 
			subL->_parent = parentParent;
		}
 
		subL->_bf = parent->_bf = 0;
	}

3.1.2右单旋

  • 调用函数是传的参数是轴点
  • 要保留轴点的父亲,以及调整三叉链
  • 调整后原来的孩子和父亲(轴点)的平衡因子都置为0;
void RotateL(Node* parent)
	{
		//轴点的右,孩子节点
		Node* subR = parent->_right;
		//孩子节点的左
		Node* subRL = subR->_left;
		//我的左当你(轴点)的右
		parent->_right = subRL;
		//调整三叉链
		if (subRL)
		{
			subRL->_parent = parent;
		}
		//你(轴点)做我的左
		subR->_left = parent;
		Node* parentparent = parent->_parent;
 
		parent->_parent = subR;
		if (parent == _root)
		{
			if (parentparent->_left == parent)
				parentparent->_left = subR;
			else
				parentparent->_right = subR;
 
			subR->_parent = parentparent;
		}
		else
		{
			subR->_parent = nullptr;
			_root = subR;
		}
 
		subR->_bf = parent->_bf = 0;
 
	}

 3.1.3左右双旋

  • 调用左单旋是传的参数是轴点1,右单旋传的轴点2
  • 平衡因子分3种情况,依靠3个被改变节点中最后一个来判断
void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;
 
		RotateL(parent->_left);
		RotateR(parent);
 
		// ...平衡因子调节还需要具体分析
		if (bf == -1)
		{
			subL->_bf = 0;
			parent->_bf = 1;
			subLR->_bf = 0;
		}
		else if (bf == 1)
		{
			parent->_bf = 0;
			subL->_bf = -1;
			subLR->_bf = 0;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

依靠3个被改变节点中最后一个来判断

3.1.4右左双旋 

  • 调用右单旋是传的参数是轴点1,左单旋传的轴点2
  • 平衡因子分3种情况,依靠3个被改变节点中最后一个来判断
void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;
 
		RotateR(parent->_right);
		RotateL(parent);
 
		// 平衡因子更新
		if (bf == 1)
		{
			subR->_bf = 0;
			parent->_bf = -1;
			subRL->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 0;
			subR->_bf = 1;
			subRL->_bf = 0;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

附:AVL的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即log2(N)

但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:

插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

总结

  • 调用旋转的实参是轴点
  • 左单旋:我的左当你的右,你(轴点)当我的左
  • 右单旋:我的右当你的左,你(轴点)当我的右

到此这篇关于C++AVL树4种旋转(左单旋、右单旋、左右双旋、右左双旋)的文章就介绍到这了,更多相关C++AVL树旋转内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 字符串的模式匹配详解--BF算法与KMP算法

    字符串的模式匹配详解--BF算法与KMP算法

    这篇文章记录一下串里面的模式匹配,模式匹配,顾名思义就是给定一个被匹配的字符串,然后用一个字符串模式(模型)去匹配上面说的字符串,看后者是否在前者里面出现。常用的有2种算法可以实现,下面我们来具体探讨下
    2014-08-08
  • 探究一下C语言生成随机数的奥秘

    探究一下C语言生成随机数的奥秘

    C语言中生成随机数是一项非常重要的功能,因为许多现代应用程序需要使用随机数。本文就来带大家一起探究一下C语言生成随机数的奥秘吧
    2023-03-03
  • 详解C语言之动态内存管理

    详解C语言之动态内存管理

    本文主要介绍了C语言动态内存管理的实现,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-11-11
  • 关于C语言中E-R图的详解

    关于C语言中E-R图的详解

    今天小编就为大家分享一篇关于关于C语言中E-R图的详解,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2018-12-12
  • C语言运算符的重载详解

    C语言运算符的重载详解

    大家好,本篇文章主要讲的是C语言运算符的重载详解,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下
    2022-01-01
  • 用VScode编写C++大型项目的方法步骤

    用VScode编写C++大型项目的方法步骤

    本文主要介绍了用VScode编写C++大型项目的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-05-05
  • C语言中关于scanf函数的一些问题详解

    C语言中关于scanf函数的一些问题详解

    这篇文章主要为大家介绍了C语言中关于scanf函数的一些问题,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-12-12
  • 输入一个字符串,取出其中的整数(实现代码)

    输入一个字符串,取出其中的整数(实现代码)

    输入一个字符串,内含所有数字和非数字字符。将其中连续的数字作为一个整数,依次存放到一个数组中,统计共有多少个整数,并输出这些数
    2013-09-09
  • C++ 动态创建按钮及 按钮的消息响应

    C++ 动态创建按钮及 按钮的消息响应

    这篇文章主要介绍了C++ 动态创建按钮及 按钮的消息响应的相关资料,需要的朋友可以参考下
    2015-06-06
  • Linux UDP服务端和客户端程序的实现

    Linux UDP服务端和客户端程序的实现

    这篇文章主要介绍了Linux UDP服务端和客户端程序的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-05-05

最新评论